Memetic Computing

, Volume 10, Issue 1, pp 29–42 | Cite as

Guided genetic algorithm for the multidimensional knapsack problem

  • Abdellah Rezoug
  • Mohamed Bader-El-Den
  • Dalila Boughaci
Regular Research Paper


Genetic Algorithm (GA) has emerged as a powerful method for solving a wide range of combinatorial optimisation problems in many fields. This paper presents a hybrid heuristic approach named Guided Genetic Algorithm (GGA) for solving the Multidimensional Knapsack Problem (MKP). GGA is a two-step memetic algorithm composed of a data pre-analysis and a modified GA. The pre-analysis of the problem data is performed using an efficiency-based method to extract useful information. This prior knowledge is integrated as a guide in a GA at two stages: to generate the initial population and to evaluate the produced offspring by the fitness function. Extensive experimentation was carried out to examine GGA on the MKP. The main GGA parameters were tuned and a comparative study with other methods was conducted on well-known MKP data. The real impact of GGA was checked by a statistical analysis using ANOVA, t-test and Welch’s t-test. The obtained results showed that the proposed approach largely improved standard GA and was highly competitive with other optimisation methods.


Genetic algorithm Hybrid heuristic Memetic algorithm Multidimensional knapsack problem Core concept Guided genetic algorithm 


  1. 1.
    Acan A, Tekol Y (2003) Chromosome reuse in genetic algorithms. In: Genetic and evolutionary computation conference, Springer, pp 695–705Google Scholar
  2. 2.
    Akçay Y, Li H, Xu SH (2007) Greedy algorithm for the general multidimensional knapsack problem. Ann Oper Res 150(1):17MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bader-El-Den M, Gaber M (2012) Garf: towards self-optimised random forests. In: International conference on neural information processing, Springer, pp 506–515Google Scholar
  4. 4.
    Bader-El-Den M, Poli R (2007) Generating sat local-search heuristics using a gp hyper-heuristic framework. In: International conference on artificial evolution (Evolution Artificielle), Springer, pp 37–49Google Scholar
  5. 5.
    Bader-El-Den M, Poli R, Fatima S (2009) Evolving timetabling heuristics using a grammar-based genetic programming hyper-heuristic framework. Memet Comput 1(3):205–219CrossRefGoogle Scholar
  6. 6.
    Balas E, Zemel E (1980) An algorithm for large zero-one knapsack problems. Oper Res 28(5):1130–1154MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baroni MDV, Varejão FM (2015) A shuffled complex evolution algorithm for the multidimensional knapsack problem. In: Iberoamerican congress on pattern recognition, Springer, pp 768–775Google Scholar
  8. 8.
    Castro F, Gelbukh A, González M (2013) Advances in Soft Computing and Its Applications. In: 12th Mexican international conference, MICAI 2013, Mexico City, Mexico, November 24-30, 2013, proceedings. No. pt. 2 in lecture notes in computer science, Springer Berlin Heidelberg,
  9. 9.
    Chen SH, Chang PC, Cheng T, Zhang Q (2012) A self-guided genetic algorithm for permutation flowshop scheduling problems. Comput Oper Res 39(7):1450–1457MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chu PC, Beasley JE (1998) A genetic algorithm for the multidimensional knapsack problem. J Heuristics 4(1):63–86CrossRefMATHGoogle Scholar
  11. 11.
    Dantzig GB (1957) Discrete-variable extremum problems. Oper Res 5(2):266–288MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dobson G (1982) Worst-case analysis of greedy heuristics for integer programming with nonnegative data. Math Oper Res 7(4):515–531MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Drake JH, Özcan E, Burke EK (2015) Modified choice function heuristic selection for the multidimensional knapsack problem. In: Genetic and evolutionary computing, Springer, pp 225–234Google Scholar
  14. 14.
    Fatima S, Bader-El-Den M (2010) Co-evolutionary hyper-heuristic method for auction based scheduling. In: Evolutionary computation (CEC), 2010 IEEE congress on, IEEE, pp 1–8Google Scholar
  15. 15.
    Gabaldon E, Lerida JL, Guirado F, Planes J (2014) Slowdown-guided genetic algorithm for job scheduling in federated environments. In: International conference on nature of computation and communication, Springer, pp 181–190Google Scholar
  16. 16.
    Hill RR, Cho YK, Moore JT (2012) Problem reduction heuristic for the 0–1 multidimensional knapsack problem. Comput Oper Res 39(1):19–26MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Huston S, Puchinger J, Stuckey P (2008) The core concept for 0/1 integer programming. In: Proceedings of the fourteenth symposium on Computing: the Australasian theory-Volume 77, Australian Computer Society, Inc., pp 39–47Google Scholar
  18. 18.
    Kellerer H, Pferschy U, Pisinger D (2004) Introduction to NP-completeness of knapsack problems. Springer, Berlin, Heidelberg, pp 483–493Google Scholar
  19. 19.
    Magazine M, Oguz O (1984) A heuristic algorithm for the multidimensional zero-one knapsack problem. Eur J Oper Res 16(3):319–326MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Perry T, Bader-El-Den M, Cooper S (2015) Imbalanced classification using genetically optimized cost sensitive classifiers. In: Evolutionary computation (CEC), 2015 IEEE congress on, IEEE, pp 680–687Google Scholar
  21. 21.
    Pirkul H (1987) A heuristic solution procedure for the multiconstraint zero? one knapsack problem. Naval Res Logist 34(2):161–172MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Poli R, Koza J (2014) Genetic programming. In: Search methodologies, Springer, pp 143–185Google Scholar
  23. 23.
    Puchinger J, Raidl GR, Pferschy U (2006) The core concept for the multidimensional knapsack problem. Springer, BerlinCrossRefMATHGoogle Scholar
  24. 24.
    Rasheed K (1999) Guided crossover: a new operator for genetic algorithm based optimization. In: Evolutionary computation, 1999. CEC 99. Proceedings of the 1999 congress on, IEEE, vol 2, pp 1535–1541Google Scholar
  25. 25.
    Rezoug A, Boughaci D (2016) A self-adaptive harmony search combined with a stochastic local search for the 0–1 multidimensional knapsack problem. Int J Bio Inspired Comput 8(4):234–239Google Scholar
  26. 26.
    Rezoug A, Boughaci D, Bader-El-Den M (2015) Memetic algorithm for solving the 0-1 multidimensional knapsack problem. In: Portuguese conference on artificial intelligence, Springer, pp 298–304Google Scholar
  27. 27.
    Senju S, Toyoda Y (1968) An approach to linear programming with 0-1 variables. Management Science pp B196–B207Google Scholar
  28. 28.
    Snášel V, Dvorskỳ J, Ochodková E, Krömer P, Platoš J, Abraham A (2010) Evolving quasigroups by genetic algorithms. In: Proceedings of DATESO, Citeseer, pp 108–117Google Scholar
  29. 29.
    Sudholt D (2015) Parallel evolutionary algorithms. In: Springer handbook of computational intelligence, Springer, pp 929–959Google Scholar
  30. 30.
    Tang KS, Man KF, Kwong S, He Q (1996) Genetic algorithms and their applications. IEEE Signal Process Mag 13(6):22–37CrossRefGoogle Scholar
  31. 31.
    Vázquez-Barreiros B, Mucientes M, Lama M (2014) A genetic algorithm for process discovery guided by completeness, precision and simplicity. In: International conference on business process management, Springer, pp 118–133Google Scholar
  32. 32.
    Volgenant A, Zoon J (1990) An improved heuristic for multidimensional 0–1 knapsack problems. J Oper Res Soc 41(10):963–970CrossRefMATHGoogle Scholar
  33. 33.
    Yang S, Jat SN (2011) Genetic algorithms with guided and local search strategies for university course timetabling. IEEE Trans Syst Man Cybern Part C (Appl Rev) 41(1):93–106CrossRefGoogle Scholar
  34. 34.
    Zhang Q, Sun J, Tsang E (2005) An evolutionary algorithm with guided mutation for the maximum clique problem. IEEE Trans Evolut Comput 9(2):192–200CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Abdellah Rezoug
    • 1
  • Mohamed Bader-El-Den
    • 2
  • Dalila Boughaci
    • 3
  1. 1.Department of Computer ScienceUniversity Mhamed Bougara of BoumerdesBoumerdesAlgeria
  2. 2.School of ComputingUniversity of PortsmouthPortsmouthUnited Kingdom
  3. 3.Department of Computer ScienceUniversity of Science and Technology Houari BoumedieneAlgiersAlgeria

Personalised recommendations