Skip to main content

Advertisement

Log in

3,3′-Diindolylmethane Encapsulated Chitosan Nanoparticles Accelerates Inflammatory Markers, ER/PR, Glycoprotein and Mast Cells Population During Chemical Carcinogen Induced Mammary Cancer in Rats

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

A Correction to this article was published on 25 May 2021

This article has been updated

Abstract

The present study aimed to investigate the effect of 3,3′-diindolylmethane (DIM) on inflammatory markers, estrogen receptors (ER), progesterone receptors (PR), level of glycoprotein and the mast cell population in 7,12-dimethylbenz (a) anthracene (DMBA) 25 mg/kg b.wt. induced rat mammary carcinogenesis. After 8 weeks of tumor formation, rats had access to an oral administrated with DIM 10 mg/kg b.wt. and DIM@CS-NP 0.5 mg/kg body weight respectively for 8 weeks. The oral administration of DIM@CS-NP 0.5 mg/kg b.wt. suppressed the Cox-2, NF-κB and TNF-α protein expression on DMBA induced rats compared to DIM 10 mg/kg b.wt. The ER/PR levels were increased on DMBA induced rats, treated with DIM@CS-NP 0.5 mg/kg b.wt. reduced ER/PR level as well as glycoprotein and mast cell population than DIM 10 mg/kg b.wt. The result shows that, DIM@CS-NP 0.5 mg/kg b.wt. has the potentially inhibit abnormal levels of inflammatory markers, ER, PR, levels of glycoprotein and mast cell population compared to DIM 10 mg/kg b.wt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Temple NT, Gladwin KK. Fruit, vegetables, and the prevention of cancer: research challenges. Nutrition. 2003;19:467–70.

    Article  Google Scholar 

  2. Luo Y, Wang TT, Teng Z, Chen P, Sun J, Wang Q. Encapsulation of indole-3-carbinol and 3,3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chem. 2013;139:224–30.

    Article  CAS  Google Scholar 

  3. Blanco E, Ferrari M. Emerging nanotherapeutic strategies in breast cancer. Breast. 2014;23:10–8.

    Article  Google Scholar 

  4. Hu Y, Jiang XQ, Ding Y, Ge HX, Yuan YY. Synthesis and characterization of chitosan–poly (acrylic acid) nanoparticles. Biomaterials. 2002;23:3193–201.

    Article  CAS  Google Scholar 

  5. Chuang JY, Yang WY, Lai CH, Lin CD, Tsai MH. CTGF inhibits cell motility and COX-2 expression in oral cancer cells. Int Immunopharmacol. 2011;11:948–54.

    Article  CAS  Google Scholar 

  6. Zhao Y, Yang F, Li W, Xu C, Li L, Chen L, et al. miR-29 a suppresses MCF-7 cell growth by down regulating tumor necrosis factor receptor 1. Tumour Biol. 2017;39(2):1010428317692264.

    PubMed  Google Scholar 

  7. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW. IKK beta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118:285–96.

    Article  CAS  Google Scholar 

  8. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  Google Scholar 

  9. Isabella S, Mirunalini S. Chemotherapeutic effect of 3,3′-diindolylmethane encapsulated chitosan nanoparticles on 7,12-Dimethylbenz(a) anthracene induced mammary cancer—a dose dependent study. New Horiz Transl Med. 2016;3:1–8.

    Google Scholar 

  10. Elzatahry AA, Mohy Eldin MS. Preparation and characterization of metronidazole-loaded chitosan nanoparticles for drug delivery application. Polym Adv Technol. 2008;19:1787–91.

    Article  CAS  Google Scholar 

  11. Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerface. 2013;110:313–20.

    Article  CAS  Google Scholar 

  12. Welsch CW. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res. 1985;45:3415–43.

    CAS  PubMed  Google Scholar 

  13. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  CAS  Google Scholar 

  14. Migliaccio AR, Rana RA, Sanchez M, Lorenzini R, Centurione L. GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J Exp Med. 2003;197:281–96.

    Article  CAS  Google Scholar 

  15. Yamabayashi S. Periodic acid–Schiff–alcian blue: a method for the differential staining of glycoproteins. J Histochem. 1987;71:565–71.

    Article  Google Scholar 

  16. Choi JS, Cao J, Naeem M, Noh J, Hasan N, Choi HK, et al. Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition. Colloids Surf B Biointerfaces. 2014;122:545–51.

    Article  CAS  Google Scholar 

  17. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3:133–49.

    Article  Google Scholar 

  18. Idriss HT, Naismith JH. TNF alpha and the TNF receptor super family: structure-function relationship(s). Microsc Res Tech. 2000;50:184–95.

    Article  CAS  Google Scholar 

  19. Kumar R, Vadlamudi K, Adam L. Apoptosis in mammary gland and cancer. Endocr Relat Cancer. 2000;7:257–69.

    Article  CAS  Google Scholar 

  20. Wang Z, Yu BW, Rahman KM, Ahmad F, Sarkar FH. Induction of growth arrest and apoptosis in human breast cancer cells by 3,3-diindolylmethane is associated with induction and nuclear localization of p27kip. Mol Cancer Ther. 2008;7:341–9.

    Article  CAS  Google Scholar 

  21. Pandey M, Prakash O, Santhi WS, Soumithran CS, Pillai RM. Overexpression of COX-2 gene in oral cancer is independent of stage of disease and degree of differentiation. Int J Oral Maxillofac Surg. 2008;37:379–83.

    Article  CAS  Google Scholar 

  22. Subbaramaiah K, Dannenberg AJ. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci. 2003;24:96–102.

    Article  CAS  Google Scholar 

  23. Pandi M, Manikandan R, Muthumary J. Anticancer activity of fungal taxol derived from Botryodiplodia theobromae Pat., an endophytic fungus, against 7,12-Dimethylbenz (a) anthracene (DMBA)-induced mammary gland carcinogenesis in Sprague Dawley rats. Biomed Pharmacother. 2010;64:48–53.

    Article  CAS  Google Scholar 

  24. Kim YH, Kwon H-S, Kim DH, Shin EK. 3,3′-Diindolylmethane attenuates colonic inflammation and tumorigenesis in mice. Inflamm Bowel Dis. 2009;15:1164–73.

    Article  Google Scholar 

  25. Buijs JT, Cleton AM, Smit VT, Lowik CW, Papapoulos SE. Prognostic significance of periodic acid-Schiff-positive patterns in primary breast cancer and its lymph node metastases. Breast Cancer Res Treat. 2004;84:117–30.

    Article  Google Scholar 

  26. Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O. Inflammatory mast cells up-regulate angiogenesis during Squamous epithelial carcinogenesis. Genes Dev. 1999;13:1382–97.

    Article  CAS  Google Scholar 

  27. Laverias G, Danilo C, Mercier I, Daumer K, Capozza F. Role of cholesterol in the development cholesterol in the development and progression of breast cancer. Am J Pathol. 2011;178:402–12.

    Article  Google Scholar 

  28. Telang NT, Suto A, Wong GY, Osborne MP, Bradlow HL. Induction by estrogen metabolite 16-alphahydroxyestrone of genotoxic damage and aberrant proliferation in mouse mammary epithelial cells. J Natl Cancer Inst. 1992;84:634–8.

    Article  CAS  Google Scholar 

  29. Deepalakshmi K, Mirunalini S. Efficacy of Pleurotus ostreatus (Jacq. Ex Fr.) P. Kumm., on 7,12-Dimethylbenz (a) anthracene induced mammary carcinogenesis in female Sprague-Dawley rats. New Horiz Transl Med. 2016;3:73–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankaran Mirunalini.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isabella, S., Mirunalini, S. & Pandiyan, K. 3,3′-Diindolylmethane Encapsulated Chitosan Nanoparticles Accelerates Inflammatory Markers, ER/PR, Glycoprotein and Mast Cells Population During Chemical Carcinogen Induced Mammary Cancer in Rats. Ind J Clin Biochem 33, 397–405 (2018). https://doi.org/10.1007/s12291-017-0701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-017-0701-2

Keywords

Navigation