Skip to main content

Advertisement

Log in

Thiamine Deficiency Induced Dietary Disparity Promotes Oxidative Stress and Neurodegeneration

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Thiamine or vitamin B1 is a well known coenzyme and nutrient necessary for the assembly and right functioning of several enzymes involved in the energy metabolism. The present study evaluates oxidative stress and prevalence of neurodegenerative conditions in the brain following TD. The study was carried out on mice (Musmusculus) in three groups, namely control and thiamine-deficient group for 8 (TD 8) and 10 (TD 10) days. Lipid peroxidation was determined in terms of reduced glutathione (GSH) and thiobarbituric acid reactive substance (TBARS). The level of antioxidant enzymes such as catalase (CAT), glutathione reductase, glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione transferase (GST) were measured along with histopathological studies in all the groups. There was significant increase in the TBARS levels in group II (TD 8) and group III (TD 10) animals in comparison to controls (Group I). The GSH levels were found to be lower in both the treated groups. The level of antioxidant enzymes CAT (p < 0.001), glutathione reductase (p < 0.001), GPx (p < 0.001), SOD (p < 0.0001) were found to be significantly reduced in group III (TD 10) in comparison to controls. Histopathological studies showed moderated to extensive neuronal loss in group II and group III in comparison to control group. The increase in LPO and reduction in enzymes CAT, glutathione reductase, GPx, SOD, and GST following TD suggests mitochondrial dysfunction, neuronal loss acute oxidative stress that may impair the functioning of the brain along with the rise of neurodegenerative conditions in the affected animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 2005;58:495–505.

    Article  CAS  Google Scholar 

  2. Zielke HR, Zielke CL, Baab PJ. Direct measurement of oxidative metabolism in the living brain by microdialysis: a review. J Neurochem. 2009;09(Suppl 1):24–9.

    Article  Google Scholar 

  3. Mancuso M, Coppede F, Migliore L, Siciliano G, Murri L. Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alz Dis. 2006;10:59–73.

    Article  CAS  Google Scholar 

  4. Magistretti PJ. Brain energy metabolism. In: Squire LR, Berg D, Bloom FE, Du Lac S, Ghosh A, Spitzer NC, editors. Fundamental neuroscience. San Diego: Academic Press; 2008. p. 271–93.

    Google Scholar 

  5. Van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29:1121–9.

    Article  Google Scholar 

  6. Hakim AM, Pappius HM. The effect of thiamine deficiency on local cerebral glucose utilization. Ann Neurol. 1981;9(4):334–9.

    Article  CAS  Google Scholar 

  7. Aikawa H, Watanabe IS, Fursue T, Iwasaki Y, Satoyoshi E, Sumi T, et al. Low energy levels in thiamine deficient encephalopathy. J Neuropathol Exp Neurol. 1984;43:276–87.

    Article  CAS  Google Scholar 

  8. Harata N, Iwasaki Y. Evidence for early blood-brain barrier breakdown in experimental thiamine deficiency in the mouse. Metab Brain Dis. 1995;10:159–74.

    Article  CAS  Google Scholar 

  9. Desjardins P, Butterworth RF. Pathogenesis of selective neuronal loss in Wernicke–Korsakoff syndrome: role of oxidative stress. In: Jordan F, Patel MS, editors. Thiamine: catalytic mechanisms and role in normal and disease states. New York: Marcel Dekker; 2003. p. 339–47.

    Google Scholar 

  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH. OXPHOS mutations and neurodegeneration. EMBO J. 2013;32(1):9–29.

    Article  CAS  Google Scholar 

  11. Martinez-Reyes I, Cuezva JM. The H(+)-ATP synthase: a gate to ROS-mediated cell death or cell survival. Biochim Biophys Acta. 2014;1837(7):1099–112.

    Article  CAS  Google Scholar 

  12. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003;91:179–94.

    Article  CAS  Google Scholar 

  13. Sharma A, Bist R, Bubber P. Thiamine deficiency induces oxidative stress in brain mitochondria of Mus musculus. J Physiol Biochem. 2013;69:539–46.

    Article  CAS  Google Scholar 

  14. Bubber P, Ke ZJ, Gibson GE. Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochem Int. 2004;45:1021–8.

    Article  CAS  Google Scholar 

  15. Ohkawa H, Ohshi N, Yagi K. Assay or lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    Article  CAS  Google Scholar 

  16. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7.

    Article  CAS  Google Scholar 

  17. Claiborne A. Catalase activity. In: Greenwald RA, editor. CRC handbook of methods in oxygen radical research. Boca Raton, FL: CRC Press; 1985. p. 283–4.

    Google Scholar 

  18. Carlberg I, Mannervik B. Glutathione reductase levels in rat brain. J Biol Chem. 1975;250:5475–80.

    CAS  PubMed  Google Scholar 

  19. Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller D. Differential distribution of glutathione and glutathione related enzymes in rabbit kidneys: possible implication in analgesic neuropathy. Can Res. 1984;44:5086–91.

    CAS  Google Scholar 

  20. Dhindsa RH, Plumb-Dhindsa P, Thorpe TA. Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT. J Exp Bot. 1981;32:93–101.

    Article  CAS  Google Scholar 

  21. Habig WH, Pabst MJ, Jokoby WB. Glutathione-S-transferase: the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.

    CAS  Google Scholar 

  22. Jhala SS, Hazell AS. Modeling neurodegenerative disease path physiology in thiamine deficiency: consequences of impaired oxidative metabolism. Neurochem Int. 2011;58:248–60.

    Article  CAS  Google Scholar 

  23. Gibson GE, Ksiezak-Reding H, Sheu KF, Mykytyn V, Blass JP. Correlation of enzymatic, metabolic, and behavioral deficits in thiamin deficiency and its reversal. Neurochem Res. 1984;9(6):803–14.

    Article  CAS  Google Scholar 

  24. Shangari N, Depeint F, Furrer R, Bruce WR, O’Brien PJ. The effects of partial thiamin deficiency and oxidative stress (i.e., glyoxal and methylglyoxal) on the levels of alpha-oxoaldehyde plasma protein adducts in Fischer 344 rats. FEBS Lett. 2005;579:5596–602.

    Article  CAS  Google Scholar 

  25. Madrigal JL, Olivenz R, Moro MA, Lizasoin I, Lorenza P, Rodrigo J, et al. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. J Neuropsychopharmacol. 2001;24:420–9.

    Article  CAS  Google Scholar 

  26. Ansari MA, Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med. 2008;45:443–52.

    Article  CAS  Google Scholar 

  27. Cox AG, Winterbourn CC, Hampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J. 2010;425(2):313–25.

    Article  CAS  Google Scholar 

  28. Ferreiro E, Baldeiras I, Ferreira IL, Costa RO, Rego AC, Pereira CF, Oliveira CR. Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer’s disease: from pathogenesis to biomarkers. Int J Cell Biol. 2012;2012:735206.

    Article  CAS  Google Scholar 

  29. Callio J, Oury TD, Chu CT. Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J Biol Chem. 2005;280:18536–42.

    Article  CAS  Google Scholar 

  30. Bayir H, Kagan VE, Clark RS, Janesko-Feldman K, Rafikov R, Huang Z, et al. Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J Neurochem. 2007;101:168–81.

    Article  CAS  Google Scholar 

  31. Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol. 2010;69(2):155–67.

    Article  CAS  Google Scholar 

  32. Gioda CR, Tde Oliveira Barreto, Primola-Gomes TN, de Lima DC, Campos PP, Capettini LSA, et al. Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. Am J Physiol Heart Circ Physiol. 2010;298:H2039–45.

    Article  CAS  Google Scholar 

  33. Baez S, Segura-Aguilar J, Widersten M, Johansson AS, Mannervik B. Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J. 1997;324:25–8.

    Article  CAS  Google Scholar 

  34. Vernau K, Napoli E, Wong S, Ross-Inta C, Cameron J, Bannasch D, et al. Thiamine deficiency-mediated brain mitochondrial pathology in Alaskan Huskies with mutation in SLC19A3.1. Brain Pathol. 2015;25(4):441–53.

    Article  CAS  Google Scholar 

  35. Calingasan NY, Gibson GE. Vascular endothelium is a site of free radical production and inflammation in areas of neuronal loss in thiamine-deficient brain. Ann N Y Acad Sci. 2000;903:353–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Professor Aditya Shastri, Vice Chancellor, Banasthali University, Rajasthan for providing suitable facilities and funding to carry out the research in the department of BioScience and Biotechnology. We are also thankful to Department of Science and Technology (DST) for providing funding to Ms. Anisha Chauhan under women scientist scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvesh Bubber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Srivastva, N. & Bubber, P. Thiamine Deficiency Induced Dietary Disparity Promotes Oxidative Stress and Neurodegeneration. Ind J Clin Biochem 33, 422–428 (2018). https://doi.org/10.1007/s12291-017-0690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-017-0690-1

Keywords

Navigation