Indian Journal of Clinical Biochemistry

, Volume 33, Issue 2, pp 163–170 | Cite as

Urinary Urea, Uric Acid and Hippuric Acid as Potential Biomarkers in Multiple Sclerosis Patients

  • Hanaa B. Atya
  • Sahar A. Ali
  • Mohamed I. Hegazy
  • Fathia Z. El Sharkawi
Original Article


Urine is a proven source of metabolite biomarkers and has the potential to be a rapid, noninvasive, inexpensive, and efficient diagnostic tool for various human diseases. Despite these advantages, urine is an under-investigated source of biomarkers for multiple sclerosis (MS). The objective was to investigate the level of some urinary metabolites (urea, uric acid and hippuric acid) in patients with MS and correlate their levels to the severity of the disease, MS subtypes and MS treatment. The urine samples were collected from 73 MS patients-48 with RRMS and 25 with SPMS- and age matched 75 healthy controls. The values of urinary urea, uric acid and hippuric acid in MS patients were significantly decreased, and these metabolites in SPMS pattern showed significantly decrease than RRMS pattern. Also showed significant inverse correlation with expanded disability status scale and number of relapses. Accordingly, they may act as a potential urinary biomarkers for MS, and correlate to disease progression.


Urinary Urea Uric acid Hippuric acid Multiple sclerosis 



This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests related to the publication of this paper.


  1. 1.
    Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747.CrossRefPubMedGoogle Scholar
  2. 2.
    Miller E, Walczak A, Saluk J, Ponczek MB, Majsterek I. Oxidative modification of patient’s plasma proteins and its role in pathogenesis of multiple sclerosis. Clin Biochem. 2012;45(1–2):26–30. doi: 10.1016/j.clinbiochem.2011.09.021.CrossRefPubMedGoogle Scholar
  3. 3.
    Tremlett H, van der Mei IA, Pittas F, Blizzard L, Paley G, Mesaros D, et al. Monthly ambient sunlight, infections and relapse rates in multiple sclerosis. Neuroepidemiology. 2008;31(4):271–9. doi: 10.1159/000166602.CrossRefPubMedGoogle Scholar
  4. 4.
    Marrie RA, Cohen JA. Interferons in secondary progressive multiple sclerosis, in multiple sclerosis therapeutics. 3rd ed. London: Informa Healthcare; 2007.Google Scholar
  5. 5.
    Gebregiworgis T, Massilamany C, Gangaplara A, Thulasingam S, Kolli V, Werth MT, et al. The potential of urinary metabolites for diagnosing multiple sclerosis. ACS Chem Biol. 2013;8(4):684–90. doi: 10.1021/cb300673e.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lourenco AS, Baldeiras I, Graos M, Duarte CB. Proteomics-based technologies in the discovery of biomarkers for Multiple Sclerosis in the cerebrospinal fluid. Curr Mol Med. 2011;11(4):326–49.CrossRefPubMedGoogle Scholar
  7. 7.
    Bielekova B, Martin R. Development of biomarkers in multiple sclerosis. Brain. 2004;127(Pt 7):1463–78.CrossRefPubMedGoogle Scholar
  8. 8.
    Dobson R. Urine: an under-studied source of biomarkers in multiple sclerosis? Mult Scler Relat Disord. 2012;1(2):76–80. doi: 10.1016/j.msard.2012.01.002.CrossRefPubMedGoogle Scholar
  9. 9.
    Gholipour T, Ghazizadeh T, Babapour S, Mansouri B, Ghafarpour M, Siroos B, et al. Decreased urinary level of melatonin as a marker of disease severity in patients with multiple sclerosis. Iran J Allergy Asthma Immunol. 2015;14(1):91–7.PubMedGoogle Scholar
  10. 10.
    Rejdak K, Leary SM, Petzold A, Thompson AJ, Miller DH, Giovannoni G. Urinary neopterin and nitric oxide metabolites as markers of interferon beta-1a activity in primary progressive multiple sclerosis. Mult Scler. 2010;16(9):1066–72. doi: 10.1177/1352458510375100.CrossRefPubMedGoogle Scholar
  11. 11.
    Dobson R, Miller RF, Palmer HE, Feldmann M, Thompson EJ, Thompson AJ, et al. Increased urinary free immunoglobulin light chain excretion in patients with multiple sclerosis. J Neuroimmunol. 2010;220(1–2):99–103. doi: 10.1016/j.jneuroim.2010.01.012.CrossRefPubMedGoogle Scholar
  12. 12.
    Gebregiworgis T, Powers R. Application of NMR metabolomics to search for human disease biomarkers. Comb Chem High Throughput Screen. 2012;15(8):595–610.CrossRefPubMedGoogle Scholar
  13. 13.
    Patassini S, Begley P, Reid SJ, Xu J, Church SJ, Curtis M, et al. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington’s disease. Biochem Biophys Res Commun. 2015;468(1–2):161–6. doi: 10.1016/j.bbrc.2015.10.140.CrossRefPubMedGoogle Scholar
  14. 14.
    Xu J, Begley P, Church SJ, Patassini S, Hollywood KA, Jüllig M, et al. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer’s disease: snapshot of a pervasive metabolic disorder. Biochim Biophys Acta. 2016;1862(6):1084–92. doi: 10.1016/j.bbadis.2016.03.001.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kutzing MK, Firestein BL. Altered uric acid levels and disease states. J Pharmacol Exp Ther. 2008;324(1):1–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Pakpoor J, Seminog OO, Ramagopalan SV, Goldacre MJ. Clinical associations between gout and multiple sclerosis, Parkinson’s disease and motor neuron disease: record-linkage studies. BMC Neurol. 2015;15:16. doi: 10.1186/s12883-015-0273-9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lees HJ, Swann JR, Wilson ID, Nicholson JK, Holmes E. Hippurate: the natural history of a mammalian-microbial cometabolite. J Proteome Res. 2013;12(4):1527–46. doi: 10.1021/pr300900b.CrossRefPubMedGoogle Scholar
  18. 18.
    Cantarel BL, Waubant E, Chehoud C, Kuczynski J, DeSantis TZ, Warrington J, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Invest Med. 2015;63(5):729–34.CrossRefGoogle Scholar
  19. 19.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302. doi: 10.1002/ana.22366.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52.CrossRefPubMedGoogle Scholar
  21. 21.
    Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, et al. Multiple sclerosis severity score: using disability and disease duration to rate disease severity. Neurology. 2005;64(7):1144–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Trinder P. Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J Clin Pathol. 1969;22(2):246.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chaney A, Marbach E. Modified reagents for determination of urea and ammonia. Clin Chem. 1962;8:130–2.PubMedGoogle Scholar
  24. 24.
    Tomokuni K, Ogata M. Direct colorimetric determination of hippuric acid in urine. Clin Chem. 1972;18(4):349–51.PubMedGoogle Scholar
  25. 25.
    Wu J, Gao Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteom. 2015;12(6):623–36. doi: 10.1586/14789450.2015.1094380.CrossRefGoogle Scholar
  26. 26.
    Gao Y. Urine-an untapped goldmine for biomarker discovery. Sci China Life Sci. 2013;56(12):1145–6. doi: 10.1007/s11427-013-4574-1.CrossRefPubMedGoogle Scholar
  27. 27.
    Schanstra JP, Mischak H. Proteomic urinary biomarker approach in renal disease: from discovery to implementation. Pediatr Nephrol. 2015;30(5):713–25. doi: 10.1007/s00467-014-2790-y.CrossRefPubMedGoogle Scholar
  28. 28.
    Jove M, Portero-Otin M, Naudi A, Ferrer I, Pamplona R. Metabolomics of human brain aging and age-related neurodegenerative diseases. J Neuropathol Exp Neurol. 2014;73(7):640–57. doi: 10.1097/NEN.0000000000000091.CrossRefPubMedGoogle Scholar
  29. 29.
    Miao Y, Liao JK. Potential serum biomarkers in the pathophysiological processes of stroke. Expert Rev Neurother. 2014;14(2):173–85. doi: 10.1586/14737175.2014.875471.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mangalam A, Poisson L, Nemutlu E, Datta I, Denic A, Dzeja P, et al. Profile of circulatory metabolites in a relapsing-remitting animal model of multiple sclerosis using global metabolomics. J Clin Cell Immunol. 2013;. doi: 10.4172/2155-9899.1000150.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Bradford CM, Ramos I, Cross AK, Haddock G, McQuaid S, Nicholas AP, et al. Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. J Neuroimmunol. 2014;273(1–2):85–95. doi: 10.1016/j.jneuroim.2014.05.007.CrossRefPubMedGoogle Scholar
  32. 32.
    Pasquinelli S, Solaro C. Nutritional assessment and malnutrition in multiple sclerosis. Neurol Sci. 2008;29(Suppl 4):S367–9. doi: 10.1007/s10072-008-1046-7.CrossRefPubMedGoogle Scholar
  33. 33.
    Sorgun MH, Yucesan C, Tegin C. Is malnutrition a problem for multiple sclerosis patients? J Clin Neurosci. 2014;21(9):1603–5. doi: 10.1016/j.jocn.2013.12.024.CrossRefPubMedGoogle Scholar
  34. 34.
    Rentzos M, Nikolaou C, Anagnostouli M, Rombos A, Tsakanikas K, Economou M, et al. Serum uric acid and multiple sclerosis. Clin Neurol Neurosurg. 2006;108(6):527–31.CrossRefPubMedGoogle Scholar
  35. 35.
    Amorini AM, Petzold A, Tavazzi B, Eikelenboom J, Keir G, Belli A, et al. Increase of uric acid and purine compounds in biological fluids of multiple sclerosis patients. Clin Biochem. 2009;42(10–11):1001–6. doi: 10.1016/j.clinbiochem.2009.03.020.CrossRefPubMedGoogle Scholar
  36. 36.
    Zoccolella S, Tortorella C, Iaffaldano P, Direnzo V, D’Onghia M, Luciannatelli E, et al. Low serum urate levels are associated to female gender in multiple sclerosis patients. PLoS ONE. 2012;7(7):e40608. doi: 10.1371/journal.pone.0040608.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mattle HP, Lienert C, Greeve I. Uric acid and multiple sclerosis. Ther Umsch. 2004;61(9):553–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Chittoor G, Kent JW Jr, Almeida M, Puppala S, Farook VS, Cole SA, et al. GWAS and transcriptional analysis prioritize ITPR1 and CNTN4 for a serum uric acid 3p26 QTL in Mexican Americans. BMC Genom. 2016;17:276. doi: 10.1186/s12864-016-2594-5.CrossRefGoogle Scholar
  39. 39.
    Markowitz CE, Spitsin S, Zimmerman V, Jacobs D, Udupa JK, Hooper DC, et al. The treatment of multiple sclerosis with inosine. J Altern Complement Med. 2009;15(6):619–25. doi: 10.1089/acm.2008.0513.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Guerrero AL, Gutiérrez F, Iglesias F, Martín-Polo J, Merino S, Martín-Serradilla J, et al. Serum uric acid levels in multiple sclerosis patients inversely correlate with disability. Neurol Sci. 2011;32(2):347–50. doi: 10.1007/s10072-011-0488-5.CrossRefPubMedGoogle Scholar
  41. 41.
    Peng F, Zhang B, Zhong X, Li J, Xu G, Hu X, et al. Serum uric acid levels of patients with multiple sclerosis and other neurological diseases. Mult Scler. 2008;14:188–96.CrossRefPubMedGoogle Scholar
  42. 42.
    Peng F, Zhong X, Deng X, Qiu W, Wu A, Long Y, et al. Serum uric acid levels and neuromyelitis optica. J Neurol. 2010;257:1021–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Kawai T, Ukai H, Inoue O, Maejima Y, Fukui Y, Ohashi F, et al. Evaluation of biomarkers of occupational exposure to toluene at low levels. Int Arch Occup Environ Health. 2008;81(3):253–62.CrossRefPubMedGoogle Scholar
  44. 44.
    Castellani S, Ungar A, Cantini C, La Cava G, Di Serio C, Altobelli A, et al. Excessive vasoconstriction after stress by the aging kidney: inadequate prostaglandin modulation of increased endothelin activity. J Lab Clin Med. 1998;132(3):186–94.CrossRefPubMedGoogle Scholar
  45. 45.
    Brahmachari S, Pahan K. Sodium benzoate, a food additive and a metabolite of cinnamon, modifies T cells at multiple steps and inhibits adoptive transfer of experimental allergic encephalomyelitis. J Immunol. 2007;179(1):275–83.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pahan K. Immunomodulation of experimental allergic encephalomyelitis by cinnamon metabolite sodium benzoate. Immunopharmacol Immunotoxicol. 2011;33(4):586–93. doi: 10.3109/08923973.2011.561861.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, et al. Role of gut commensal microflora in the development of experimental auto-immune encephalomyelitis. J Immunol. 2009;183(10):6041–50. doi: 10.4049/jimmunol.0900747.CrossRefPubMedGoogle Scholar
  48. 48.
    Benzel F, Erdur H, Kohler S, Frentsch M, Thiel A, Harms L, et al. Immune monitoring of Trichuris suis egg therapy in multiple sclerosis patients. J Helminthol. 2012;86(3):339–47. doi: 10.1017/S0022149X11000460.CrossRefPubMedGoogle Scholar
  49. 49.
    Wilson JC, Furlano RI, Jick SS, Meier CR. Inflammatory bowel disease and the risk of autoimmune diseases. J Crohns Colitis. 2016;10(2):186–93. doi: 10.1093/ecco-jcc/jjv193.CrossRefPubMedGoogle Scholar
  50. 50.
    Schicho R, Shaykhutdinov R, Ngo J, Nazyrova A, Schneider C, Panaccione R, et al. Quantitative metabolomic profiling of serum, plasma, and urine by 1H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals. J Proteome Res. 2012;11(6):3344–57. doi: 10.1021/pr300139q.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Williams HR, Cox IJ, Walker DG, Cobbold JF, Taylor-Robinson SD, Marshall SE, et al. Differences in gut microbial metabolism are responsible for reduced hippurate synthesis in Crohn’s disease. BMC Gastroenterol. 2010;10:108. doi: 10.1186/1471-230X-10-108.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2017

Authors and Affiliations

  • Hanaa B. Atya
    • 1
  • Sahar A. Ali
    • 1
  • Mohamed I. Hegazy
    • 2
  • Fathia Z. El Sharkawi
    • 1
  1. 1.Biochemistry Department, Faculty of PharmacyHelwan UniversityCairoEgypt
  2. 2.Neurology Department, Faculty of MedicineCairo UniversityCairoEgypt

Personalised recommendations