Analytical modelling of buckling in stringer sheet forming

Abstract

Stringer sheet forming enables an efficient production of branched sheet metal structures. Compared to conventional sheet metal components, stringer sheets show a significant increase in stiffness and therefore offer new possibilities for lightweight design. A challenge in stringer sheet forming is the failure due to instability, which appears in the buckling of the stringer in concave curvatures. The prediction of this failure mode is so far only possible by complex numerical simulations. This work introduces an analytical model for the prediction of the buckling failure during forming of concave stringer sheet curvatures under different process boundary conditions. It is derived from Kirchhoff’s plate theory. A detailed sensitivity analysis of all influencing parameters is shown and extends the process understanding. The model is validated by means of a 4-point bending test and a stamping process. It can be used for a conservative estimation of the buckling failure limit in stringer sheet forming.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Bar-Cohen Y (2006) Biomimetics - using nature to inspire human innovation. Bioinspiration Biomim 1(1):1–12

    Article  Google Scholar 

  2. 2.

    Zhao L, Ma J, Wang T, Xing D (2010) Lightweight design of mechanical structures based on structural bionic methodology. J Bionic Eng 7(4):S224–S231

    Article  Google Scholar 

  3. 3.

    Köhler S, Rohnert C, Groche P (2018) Extension of geometric limits in drawing of stringer sheets. Procedia Manuf 15:693–700

    Article  Google Scholar 

  4. 4.

    Groche P, Bruder E, Gramlich S (eds) (2017) Manufacturing Integrated Design - Sheet Metal Product and Process Innovation. Springer international Publishing AG, Cham (Switzerland)

  5. 5.

    Ertugrul M, Groche P (2009) Hydroforming of laser welded sheet stringers. Key Eng Mater 410-411:69–76

    Article  Google Scholar 

  6. 6.

    Bäcker F (2015) Forming of multi-axially strongly curved steel sheets with load-adapted stiffening ribs. In German: Formgebung mehrachsig stark gekrümmter Stahlbleche mit lastangepassten Versteifungsrippen. Dissertation, Technische Universität Darmstadt (Institut für Produktionstechnik und Umformmaschinen),

  7. 7.

    Ertugrul M (2011) Active media-based deep drawing of ribbed sheets. In German: Wirkmedienbasiertes Tiefziehen von verrippten Blechen. Dissertation, Technische Universität Darmstadt (Institut für Produktionstechnik und Umformmaschinen),

  8. 8.

    Volk W, Groche P, Brosius A, Ghiotti A, Kinsey BL, Liewald M, Madej L, Min J, Yanagimoto J (2019) Models and modelling for process limits in metal forming. CIRP Ann Manuf Technol 62(2):775–798

    Article  Google Scholar 

  9. 9.

    Ventsel E, Krauthammer T (2001) Thin plates and shells: theory, analysis, and applications. CRC press

  10. 10.

    Senior BW (1956) Flange wrinkling in deep-drawing operations. J Mech Phys Solids 4(4):235–246. https://doi.org/10.1016/0022-5096(56)90032-1

    Article  Google Scholar 

  11. 11.

    Cao J, Boyce MC (1997) Wrinkling behavior of rectangular plates under lateral constraint. Int J Solids Struct 34(2):153–176. https://doi.org/10.1016/S0020-7683(96)00008-X

    Article  MATH  Google Scholar 

  12. 12.

    Wang X, Cao J (2000) An analytical prediction of flange wrinkling in sheet metal forming. J Manuf Process 2(2):100–107. https://doi.org/10.1016/S1526-6125(00)70017-X

    Article  Google Scholar 

  13. 13.

    Wang X, Cao J (2000) On the prediction of side-wall wrinkling in sheet metal forming processes. Int J Mech Sci 42(12):2369–2394. https://doi.org/10.1016/S0020-7403(99)00078-8

    Article  MATH  Google Scholar 

  14. 14.

    Bleich F (1952) Buckling strength of metal structures. McGraw-hill, New York

    Google Scholar 

  15. 15.

    Groche P, Zettler A, Berner S, Schneider G (2011) Development and verification of a one-step-model for the design of flexible roll formed parts. Int J Mater Form 4(4):371–377

    Article  Google Scholar 

  16. 16.

    Magrinho JPG, Silva CMA, Silva MB, Martins PAF (2018) Formability limits by wrinkling in sheet metal forming. Proc Inst Mech Eng Part L: J Mater Design Appl 232(8):681–692

    Google Scholar 

  17. 17.

    Yan Y, Wang H-b, Wan M (2011) Prediction of stiffener buckling in press bend forming of integral panels. Transa Nonferr Metal Soc China 21(11):2459–2465. https://doi.org/10.1016/S1003-6326(11)61037-6

  18. 18.

    Groche P, Köhler S, Kern S (2018) Stamping of stringer sheets. J Manuf Process 36:319–329. https://doi.org/10.1016/j.jmapro.2018.10.025

    Article  Google Scholar 

  19. 19.

    Groche P, Bäcker F (2013) Springback in stringer sheet stretch forming. CIRP Ann Manuf Technol 62(1):275–278. https://doi.org/10.1016/j.cirp.2013.03.117

    Article  Google Scholar 

  20. 20.

    Bäcker F, Groche P (2014) An algorithm for positioning functional and structural elements on semi-finished products for forming technology. In German: Ein Algorithmus zur Positionierung von Funktions- und Strukturelementen auf Halbzeugen für die Umformtechnik. Zwischenkolloquium SFB 666 Tagungsband 5

  21. 21.

    Bäcker F, Groche P, Abedini S (2012) Stringer Sheet Forming. Paper presented at the Proceedings of NAMRI/SME, Notre Dame (Indiana)

  22. 22.

    Bäcker F, Bratzke D, Groche P, Ulbrich S (2015) Time-varying process control for stringer sheet forming by a deterministic derivative-free optimization approach. Int J Adv Manuf Technol 80(5):817–840. https://doi.org/10.1007/s00170-015-7048-8

    Article  Google Scholar 

  23. 23.

    Köhler S, Groche P, Baron A, Schuchard M (2016) Forming of stringer sheets with solid tools. Adv Mater Res 1140:3–10

    Article  Google Scholar 

  24. 24.

    Yu Y, Haibo W, Min W (2011) Prediction of fracture in press bend forming of aluminum alloy high-stiffener integral panels. Comput Mater Sci 50(7):2232–2244. https://doi.org/10.1016/j.commatsci.2011.02.034

    Article  Google Scholar 

  25. 25.

    C-g L, Li J, Dong Y-n, X-g Z, Yue T (2017) Fracture prediction in the forming of aircraft Al stiffeners using multi-point dies. Int J Adv Manuf Technol 90(9):3109–3118. https://doi.org/10.1007/s00170-016-9634-9

    Article  Google Scholar 

  26. 26.

    Luo H, Li W, Li C, Wan M (2017) Investigation of creep-age forming of aluminum lithium alloy stiffened panel with complex structures and variable curvature. Int J Adv Manuf Technol 91(9):3265–3271. https://doi.org/10.1007/s00170-017-0004-z

    Article  Google Scholar 

  27. 27.

    Timoshenko SP, Gere JM (1961) Theory of elastic stability. Dover Publications, New York

    Google Scholar 

  28. 28.

    Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids 6(3):236–249. https://doi.org/10.1016/0022-5096(58)90029-2

    Article  MATH  Google Scholar 

  29. 29.

    Hutchinson J, Neale K (1985) Wrinkling of curved thin sheet metal. Plastic instability: 71–78

  30. 30.

    Virot E, Kreilos T, Schneider TM, Rubinstein SM (2017) Stability landscape of Shell buckling. Phys Rev Lett 119(22):224101. https://doi.org/10.1103/PhysRevLett.119.224101

    Article  Google Scholar 

  31. 31.

    Zheng K, Lee J, Lin J, Dean TA (2017) A buckling model for flange wrinkling in hot deep drawing aluminium alloys with macro-textured tool surfaces. Int J Mach Tools Manuf 114(Supplement C):21–34. https://doi.org/10.1016/j.ijmachtools.2016.12.008

    Article  Google Scholar 

  32. 32.

    Kirchoff G (1850) About the balance and movement of an elastic disc. In German: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal fur die reine und angewandte Mathematik (Crelle's Journal) 40:51–88

    Google Scholar 

  33. 33.

    Liu N, Yang H, Li H, Yan S (2016) Plastic wrinkling prediction in thin-walled part forming process: a review. Chin J Aeronaut 29(1):1–14

    Article  Google Scholar 

  34. 34.

    Saxena RK, Dixit PM (2010) Prediction of flange wrinkling in deep drawing process using bifurcation criterion. J Manuf Process 12(1):19–29. https://doi.org/10.1016/j.jmapro.2010.01.003

    Article  Google Scholar 

  35. 35.

    Kim J, Yoon JW, Yang D (2003) Investigation into the wrinkling behaviour of thin sheets in the cylindrical cup deep drawing process using bifurcation theory. Int J Numer Methods Eng 56(12):1673–1705

    Article  Google Scholar 

  36. 36.

    Kawka M, Olejnik L, Rosochowski A, Sunaga H, Makinouchi A (2001) Simulation of wrinkling in sheet metal forming. J Mater Process Technol 109(3):283–289

    Article  Google Scholar 

  37. 37.

    Correia JDM, Ferron G (2004) Wrinkling of anisotropic metal sheets under deep-drawing: analytical and numerical study. J Mater Process Technol 155:1604–1610

    Article  Google Scholar 

  38. 38.

    Narayanasamy R, Sowerby R (1995) Wrinkling behaviour of cold-rolled sheet metals when drawing through a tractrix die. J Mater Process Technol 49(1):199–211. https://doi.org/10.1016/0924-0136(94)01331-T

    Article  Google Scholar 

  39. 39.

    Banu M, Takamura M, Hama T, Naidim O, Teodosiu C, Makinouchi A (2006) Simulation of springback and wrinkling in stamping of a dual phase steel rail-shaped part. J Mater Process Technol 173(2):178–184. https://doi.org/10.1016/j.jmatprotec.2005.11.023

    Article  Google Scholar 

  40. 40.

    Morovvati MR, Fatemi A, Sadighi M (2011) Experimental and finite element investigation on wrinkling of circular single layer and two-layer sheet metals in deep drawing process. Int J Adv Manuf Technol 54(1):113–121. https://doi.org/10.1007/s00170-010-2931-9

    Article  Google Scholar 

  41. 41.

    Ludwik P (1909) Elements of technological mechanics. In German: Elemente der technologischen Mechanik. Springer-Verlag, Berlin

  42. 42.

    Reihle M (1961) A simple method for recording the flow curves of steel at room temperature. In German: Ein einfaches Verfahren zur Aufnahme der Fließkurven von Stahl bei Raumtemperatur, in arch. Eisenhüttenwes. 32:331–336

    Article  Google Scholar 

  43. 43.

    Dietrich J (2018) Forming practice: forming and cutting processes, tools, machines. In German: Praxis der Umformtechnik : Umform- und Zerteilverfahren, Werkzeuge, Maschinen. 12. Aufl. 2018 edn., Wiesbaden

  44. 44.

    Doege E and Behrens BA (2010) Handbook forming. In German: Handbuch Umformtechnik. Springer, Berlin, Heidelberg

  45. 45.

    DIfNe V (1998) EN ISO 14125 - Faserverstärkte Kunststoffe - Bestimmung der Biegeeigenschaften. Beuth Verlag GmbH, Berlin

    Google Scholar 

  46. 46.

    PtU Equipment GOM Aramis. Institut für Produktionstechnik und Umformmaschinen (Technische Universität Darmstadt). https://www.ptu.tu-darmstadt.de/mn_wirueberuns/menu_austattung/menu_messtechnik/menu_gomaramisgomargus/ptu_gomaramisgomargus.en.jsp. Accessed 21.04.2019

  47. 47.

    Abaqus analysis user's manual (2010), vol IV. Dassault Systèmes (Abaqus), Providence, RI, USA

  48. 48.

    Kindmann R, Uphoff H (2014) FE buckling - Ideal buckling stresses of rectangular buckling fields. In German: FE-Beulen - Ideale Beulspannungen von rechteckigen Beulfeldern. Lehrstuhl für Stahl-, Holz-und Leichtbau; Fakultät für Bau-und Umweltingenieurwissenschaften; Ruhr-Universität Bochum. https://www.ruhr-uni-bochum.de/stahlbau/mam/software/5._fe-beulen.pdf. Accessed 14.05.2019 2019

  49. 49.

    DIfNe V (2017) DIN EN 1993-1-5 - design of steel structures - part 1–5; plated structural elements. Beuth Verlag GmbH, Berlin

    Google Scholar 

  50. 50.

    Kang J-H, Leissa AW (2005) Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges. Int J Solids Struct 42(14):4220–4238

    Article  Google Scholar 

  51. 51.

    Siebel E, Beisswänger H (1955) Deep drawing. In German: Tiefziehen. C. Hanser, München

  52. 52.

    Darendeliler H, Akkök M, Yücesoy CA (2002) Effect of variable friction coefficient on sheet metal drawing. Tribol Int 35(2):97–104

    Article  Google Scholar 

  53. 53.

    Lange K (1985) Handbook of metal forming. McGraw-Hill Book Company, New York

    Google Scholar 

  54. 54.

    Swift HW (1952) Plastic instability under plane stress. J Mech Phys Solids 1(1):1–18

    MathSciNet  Article  Google Scholar 

  55. 55.

    Recklin V, Dietrich F, Groche P (2018) Influence of test stand and contact size sensitivity on the friction coefficient in sheet metal forming. Lubricants 6(2):41

    Article  Google Scholar 

Download references

Acknowledgements

The presented investigations were carried out within transfer project T7 of CRC 666 ‘Integral sheet metal design with higher order bifurcations’ and the project ‘Prestressed, hybrid stringer sheet structures’ (GR1818/57-1) funded by the German Research Foundation (DFG). The financial support of the German Research Foundation (DFG) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Groche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Köhler, S., Husmann, H., Corbean, D. et al. Analytical modelling of buckling in stringer sheet forming. Int J Mater Form 13, 939–956 (2020). https://doi.org/10.1007/s12289-019-01518-y

Download citation

Keywords

  • Stringer sheet forming
  • Buckling
  • Analytical model
  • 4-point bending
  • Stamping