Skip to main content
Log in

A non-local void dynamics modeling and simulation using the Proper Generalized Decomposition

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In this work we develop a void filling and void motion dynamics model using volatile pressure and squeeze flow during tape placement process. The void motion and filling are simulated using a non-local model where their presence is reflected in the global macroscale behavior. Local pressure gradients during compression do play a critical role in void dynamics, and hence the need for a non-local model. Deriving a non-local model accounting for all the void motion and dynamics entails a prohibitive number of degrees of freedom, leading to unrealistic computation times with classical solution techniques. Hence, Proper Generalized Decomposition – PGD – is used to solve the aforementioned model. In fact, PGD circumvents the curse of dimensionality by using separated representation of the space coordinates. For example, a 2D problem can be solved as a sequence of 1D problems to find the 2D solution. The non-local model solution sheds light on the fundamental of the void dynamics including their pressure variation, motion and closure mechanisms. Finally, a post treatment of the transient compression of the voids is used to derive conclusions regarding the physics of the void dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Aguado JV, Borzacchiello D, Ghnatios C, Lebel F, Upadhyay R, Binetruy C, Chinesta F (2017) A simulation app based on reduced order modeling for manufacturing optimization of composite outlet guide vanes. Advanced Modeling and Simulation in Engineering Sciences 4(1):1–26

    Article  Google Scholar 

  2. Argerich C, Ibanez R, Leon A, Barasinski A, Abisset-Chavanne E, Chinesta F (2018) Tape surface characterization and classification in automated tape placement processability: modeling and numerical analysis. AIMS Materials Science 5(5):870–888

    Article  Google Scholar 

  3. Barasinski A (2012) Modlisation du procd de placement de fibres thermoplastiques. PhD thesis, Ecole Centrale Nantes

  4. Barlow A, Klima M, Shashkov M (2018) Constrained optimization framework for interface-aware sub-scale models of void closure in lagrangian hydrodynamics. J Comput Phys 371:914–944

    Article  MathSciNet  MATH  Google Scholar 

  5. Bordeu F, Ghnatios C, Boulze D, Carles B, Sireude D, Leygue A, Chinesta F (2015) Parametric 3d elastic solutions of beams involved in frame structures. Advances in Aircraft and Spacecraft Science 2(3):233–248

    Article  Google Scholar 

  6. Bur N, Joyot P, Ghnatios C, Villon P, Cueto E, Chinesta F (2016) On the use of model order reduction for simulating automated fibre placement processes. Advanced Modeling and Simulation in Engineering Sciences 3:1–18

    Article  Google Scholar 

  7. Chinesta F, Ammar A, Cueto E (2010) Recent advances in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Meth Eng 17(4):327–350

    Article  MathSciNet  MATH  Google Scholar 

  8. Chinesta F, Keunings R, Leygue A (2014) The Proper Generalized Decomposition for Advanced Numerical Simulations. Springer, Berlin

    Book  MATH  Google Scholar 

  9. Chinesta F, Leygue A, Bognet B, Ghnatios C, Poulahon F, Bordeu F, Barasinski A, Poitou A, Chatel S, Maison-Le-Poec S (2014) First steps towards an advanced simulation of composites manufacturing by automated tape placement. Int J Mater Form 7(1):81–92

    Article  Google Scholar 

  10. Cueto E, Ghnatios C, Chinesta F, Monte N, Sanchez F, Falco A (2014) Improving computational efficiency in lcm by using computational geometry and model reduction techniques. Key Eng Mater 611:339–343

    Article  Google Scholar 

  11. Ghnatios C (2012) Modélisation avancée des procédés thermiques rencontrés lors de la mise en forme des composites. PhD thesis, Ecole Centrale Nantes

  12. Ghnatios C, Xu G, Leygue A, Visionneau M, Chinesta F, Cimetire A (2016) On the space separated represntation when addressing the solution of pde in complex domains. Discrete & Continuous Dynamical Systems-Series S 9(2):475–500

    Article  MathSciNet  MATH  Google Scholar 

  13. Gruber MB, Lamontia MA, Tierney J, Gillespie JW (2009) Generating autoclave-level mechanical properties with out-of-autoclave thermoplastic placement of large composite aerospace structure. Technical report, National aeronautics and space administration, Langley research center

  14. Hickey C, Timms JG, Bickerton S (2012) Compaction response and air permeability characterization of out-of-autoclave prepreg materials. In: Proceedings of the FPCM11 Confernece

  15. Khan MA, Mitschang P, Schledjewski R (2010) Tracing void content development and identification of its effecting parameters during in situ consolidation of thermoplastic tape material. Polym Polym Compos 18(1):1–15

    Google Scholar 

  16. Leon A, Argerich C, Barasinski A, Soccard E, Chinesta F Effects of material and process parameters on in-situ consolidation. nternational Journal of Material Forming, In: Press

  17. Leon A, Barasinski A, Chinesta F (2017) Microstructural analysis of pre-impreganted tapes consolidation. Int J Mater Form 10(3):369–378

    Article  Google Scholar 

  18. Leon A, Barasinski A, Nadal E, Chinesta F (2015) High-resolution thermal analysis at thermoplastic pre-impregnated composite interfaces. Compos Interfaces 22(8):767–777

    Article  Google Scholar 

  19. Leon A, Perez M, Barasinski A, Abisset-Chavanne E, Chinesta F (2017) On the properties evolution of engineered surfaces of thin reinforced thermoplastic tapes during consolidation. Surf Topogr Metrol Prop 5:044003

    Article  Google Scholar 

  20. Perez M, Barasinski A, Courtemanche B, Ghnatios C, Chinesta F (2018) Sensitivity thermal analysis in the laser assisted tape-placement process. Aims Materials Science 5(6):1053–1072

    Article  Google Scholar 

  21. Pitchumani R, Ranganathan S, Don RC, Gillespie JW, Lamontia MA (1996) Analysis of transport phenomena governing interfacial bonding and void dynamics during thermoplastic tow-placement. Int J Heat Mass Transfer 39(9):1883–1897

    Article  Google Scholar 

  22. Ranganathan S, Advani S (1995) A non-isothermal process model for consolidation and void reduction during in-situ tow placement of thermoplastic composites. J Compos Mater 29(8):1040– 1062

    Article  Google Scholar 

  23. Saoudi A, Leon A, Gregoire G, Barasinski A, Djebaili H, Chinesta F (2017) On the interfacial thermal properties of two rough surfaces in contact in preimpregnated composites consolidation. Surf Topogr Metrol Prop 5:045010

    Article  Google Scholar 

  24. Simacek P, Advani S, Gruber M, Jensen B (2013) A non-local filling model to describe its dynamics during processing thermoplastic composites. Composites : Part A 46:154–165

    Article  Google Scholar 

  25. Stokes-Griffin CM, Matuszyk TI, Compston P, Cardew-Hall MJ (2012) Modeling automated tape placement of thermoplastic composites with in-situ consolidation. In: 4Th International Conference on Sustainable Automotive Technologies, vol 4. Springer, pp 61–68

  26. Sequeira Tavares S, Caillet-Bois N, Michaud V, Manson J-AE (2010) Non-autoclave processing of honeycomb sandwich structures Skin through thickness air permeability during cure. Composites : Part A 41:646–652

    Article  Google Scholar 

  27. Tierney J, Gillespie JW (2003) Modeling of heat transfer and void growth for the thermoplastic composite tow-placement process. J Compos Mater 37:1745–1768

    Article  Google Scholar 

  28. Zhang D, Levy A, Gillespie J (2012) On the void consolidation mechnism of continuous fiber reinforced thermoplastic composites. In: Sampe 2012, SAMPE, Baltimore

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chady Ghnatios.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghnatios, C., Simacek, P., Chinesta, F. et al. A non-local void dynamics modeling and simulation using the Proper Generalized Decomposition. Int J Mater Form 13, 533–546 (2020). https://doi.org/10.1007/s12289-019-01490-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-019-01490-7

Keywords

Navigation