Skip to main content

Advertisement

Log in

CRISP Points on Establishing CRISPR-Cas9 In Vitro Culture Experiments in a Resource Constraint Haematology Oncology Research Lab

  • Review Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Gene editing research has seen rapid growth over the past decade or so, however with the discovery of CRISPR-Cas9 gene editing tool in recent years, the same has witnessed a global interest with many scientists and research groups worldwide carrying out cutting edge experiments to target various diseases and cancers and develop a cure. This has been made possible partially due to the ease of use and flexibility of the CRISPR-Cas9 system as compared to other conventional gene editing tools. Hence, CRISPR-Cas9 has found its way into most basic molecular laboratories and within reach of most low-middle income research groups. Despite these favourable advantages, there exists a cost barrier and lack of proper knowledge and awareness on the correct work flow desired, especially in molecular laboratories looking forward to develop and experiment with high end research. This mini review attempts to iron out these factors and project an algorithmic approach to tide over and establish a workable in vitro gene editing experiment in a resource constraint haematology oncology laboratory setting. However, the basic principle and steps outlined in this review can also be translated for research in any other medical specialty laboratory setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2 His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212

    Article  PubMed  CAS  Google Scholar 

  3. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  PubMed  CAS  Google Scholar 

  5. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P et al (2011) Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 9:467–477

    Article  PubMed  CAS  Google Scholar 

  6. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA (2015) A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348:1477–1481

    Article  PubMed  CAS  Google Scholar 

  8. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 39:827–832

    Article  CAS  Google Scholar 

  12. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M et al (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–53

    Article  PubMed  CAS  Google Scholar 

  14. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Zhang H, McCarty N (2016) CRISPR-Cas9 technology and its application in hematological disorders. Br J Hematol 175:208–225

    Article  CAS  Google Scholar 

  16. Hoban MD, Bauer DE (2016) A genome editing primer for the hematologist. Blood 127:2525–2535

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Lucas D, O’Leary HA, Ebert BL, Cowan CA, Tremblay CS (2017) Utility of CRISPR/Cas9 in hematology research. Exp Hematol 54:1–3

    Article  PubMed  CAS  Google Scholar 

  18. Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO et al (2014) Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24:1526–1533

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Song B, Fan Y, He W, Zhu D, Niu X, Wang D et al (2015) Improved hematopoietic differentiation efficiency of genecorrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 24:1053–1065

    Article  PubMed  CAS  Google Scholar 

  20. Yang Y, Zhang X, Yi L, Hou Z, Chen J, Kou X et al (2016) Naive induced pluripotent stem cells generated from beta-thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9. Stem Cells Transl Med 5:8–19

    Article  PubMed  CAS  Google Scholar 

  21. Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S et al (2015) Functional correction of large factor VIII gene chromosomal inversions in Hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17:213–220

    Article  PubMed  CAS  Google Scholar 

  22. Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J et al (2015) Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther 26:114–126

    Article  PubMed  CAS  Google Scholar 

  23. Ablain J, Durand EM, Yang S, Zhou Y, Zon LI (2015) A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell 32:756–764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P et al (2015) Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Therapy 23:570–577

    Article  CAS  Google Scholar 

  25. Tagde A, Rajabi H, Bouillez A, Alam M, Gali R, Bailey S et al (2016) MUC1-C drives MYC in multiple myeloma. Blood 127:2587–2597

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Bhatia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, J., Bhatia, P. & Singh, A. CRISP Points on Establishing CRISPR-Cas9 In Vitro Culture Experiments in a Resource Constraint Haematology Oncology Research Lab. Indian J Hematol Blood Transfus 35, 208–214 (2019). https://doi.org/10.1007/s12288-018-1008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-018-1008-z

Keywords

Navigation