Skip to main content

Advertisement

Log in

Low IL-2 Expressing T Cells in Thalassemia Major Patients: Is It Immune Aging

  • Original Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Several studies have demonstrated T cell alteration and some features of immunosenescence in thalassemia major. Repeated alloimmunization converts naïve T-cells to memory cells and iron overload causes oxidative stress accelerating immune aging. To determine whether the alteration of T-cell cytokine is matched with early immune aging, the quantity of cytokine expressing T cells and their correlation to some immune aging markers were investigated. The proportion of IL2- and IFNγ expressing CD4+ and CD8+ T-cells was measured in 27 hepatitis B, C and HIV negative B-thalassemia patients and a control group aged 10–30 years, following stimulation for 6 h with streptococcus enterotoxin B and intracellular cytokine staining. This proportion then were analyzed versus the percentage of the T-cells expressing each phenotyping marker, CD27, CD28, CD57 and CCR7. CD4+ and CD8+ positive T cells expressing IL-2 were significantly lower in β-thalassemia major compared to matched controls, but not T cells expressing IFNγ. No significant difference was observed between splenectomized and non-splenectomized patients in cytokine expressing T cells. A negative correlation was noted between the percentage of T cells expressing IFNγ and T-cells expressing CD-27, but not other markers. Lower T cells expressing IL-2 may reveal the decline of naïve and central memory T cells and is likely to be a feature of early immune aging. Decreased antigenic stimulation and iron overload may help to prevent this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rahimi Z, Muniz A, Akramipour R, Tofieghzadeh F, Mozafari H, Vaisi-Raygani A et al (2009) Haplotype analysis of beta thalassemia patients in Western Iran. Blood Cells Mol Dis 42(2):140–143

    Article  CAS  Google Scholar 

  2. Kassab-Chekir A, Laradi S, Ferchichi S, Haj Khelil A, Feki M, Amri F et al (2003) Oxidant, antioxidant status and metabolic data in patients with beta-thalassemia. Clin Chim Acta Int J Clin Chem 338(1–2):79–86

    Article  CAS  Google Scholar 

  3. Rachmilewitz EA, Weizer-Stern O, Adamsky K, Amariglio N, Rechavi G, Breda L et al (2005) Role of iron in inducing oxidative stress in thalassemia: can it be prevented by inhibition of absorption and by antioxidants? Ann N Y Acad Sci 1054:118–123

    Article  CAS  Google Scholar 

  4. Schrier SL, Centis F, Verneris M, Ma L, Angelucci E (2003) The role of oxidant injury in the pathophysiology of human thalassemias. Redox Rep Commun Free Radic Res 8(5):241–245

    Article  CAS  Google Scholar 

  5. Farmakis D, Giakoumis A, Polymeropoulos E, Aessopos A (2003) Pathogenetic aspects of immune deficiency associated with beta-thalassemia. Med Sci Monit 9(1):RA19–RA22

    PubMed  Google Scholar 

  6. Gharagozloo M, Karimi M, Amirghofran Z (2009) Double-faced cell-mediated immunity in β-thalassemia major: stimulated phenotype versus suppressed activity. Ann Hematol 88(1):21–27

    Article  CAS  Google Scholar 

  7. Roshdy MN, Harfoush RA, Hamed NA, Morsi MG (2013) Quantitative estimation of interferon-gamma levels among Egyptian polytransfused haematology cases. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 19(5):490–494

  8. Poland GA, Ovsyannikova IG, Kennedy RB, Lambert ND, Kirkland JL (2014) A systems biology approach to the effect of aging, immunosenescence and vaccine response. Curr Opin Immunol 29:62–68

    Article  CAS  Google Scholar 

  9. Bernstein E, Kaye D, Abrutyn E, Gross P, Dorfman M, Murasko DM (1999) Immune response to influenza vaccination in a large healthy elderly population. Vaccine 17(1):82–94

    Article  CAS  Google Scholar 

  10. Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH et al (2003) Memory inflation: continuous accumulation of antiviral CD8 + T cells over time. J Immunol (Baltimore, Md: 1950) 170(4):2022–2029

    Article  CAS  Google Scholar 

  11. Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M (2015) Oxidative stress in beta-thalassaemia and sickle cell disease. Redox Biol 6:226–239

    Article  CAS  Google Scholar 

  12. Pawelec G, Akbar A, Caruso C, Solana R, Grubeck-Loebenstein B, Wikby A (2005) Human immunosenescence: is it infectious? Immunol Rev 205(1):257–268

    Article  CAS  Google Scholar 

  13. Sari TT, Gatot D, Akib AA, Bardosono S, Hadinegoro SR, Harahap AR et al (2014) Immune response of thalassemia major patients in Indonesia with and without splenectomy. Acta Med Indones 46(3):217–225

    PubMed  Google Scholar 

  14. Velasquez SY, Garcia LF, Opelz G, Alvarez CM, Susal C (2013) Release of soluble CD30 after allogeneic stimulation is mediated by memory T cells and regulated by IFN-gamma and IL-2. Transplantation 96(2):154–161

    Article  CAS  Google Scholar 

  15. Provinciali M, Moresi R, Donnini A, Lisa RM (2009) Reference values for CD4+ and CD8+ T lymphocytes with naive or memory phenotype and their association with mortality in the elderly. Gerontology 55(3):314–321

    Article  Google Scholar 

  16. Li G, Ju J, Weyand CM, Goronzy JJ (2015) Age-associated failure to adjust type I IFN receptor signaling thresholds after T cell activation. J Immunol (Baltimore, Md: 1950) 195(3):865–874

    Article  CAS  Google Scholar 

  17. Pourgheysari B, Bruton R, Parry H, Billingham L, Fegan C, Murray J et al (2010) The number of cytomegalovirus-specific CD4 + T cells is markedly expanded in patients with B-cell chronic lymphocytic leukemia and determines the total CD4 + T-cell repertoire. Blood 116(16):2968–2974

    Article  CAS  Google Scholar 

  18. Jang TY, Lin PC, Huang CI, Liao YM, Yeh ML, Zeng YS et al (2017) Seroprevalence and clinical characteristics of viral hepatitis in transfusion-dependent thalassemia and hemophilia patients. PLoS ONE 12(6):e0178883

    Article  Google Scholar 

  19. Mahzounieh M, Ghorani M, Karimi A, Pourgheysari B, Nikoozad R (2015) Prevalence of human T-lymphotropic virus types I and II in patients with hematological disorders in Isfahan, Iran. Jundishapur J Microbiol 8(6):e17201

    PubMed  PubMed Central  Google Scholar 

  20. Al-Awadhi AM, Alfadhli SM, Al-Khaldi D, Borhama M, Borusly M (2010) Investigation of the distribution of lymphocyte subsets and zinc levels in multitransfused beta-thalassemia major patients. Int J Lab Hematol 32(2):191–196

    Article  CAS  Google Scholar 

  21. Gharagozloo M, Bagherpour B, Tahanian M, Oreizy F, Amirghofran Z, Sadeghi HM et al (2009) Premature senescence of T lymphocytes from patients with beta-thalassemia major. Immunol Lett 122(1):84–88

    Article  CAS  Google Scholar 

  22. Pourgheysari B, Karimi L, Beshkar P (2016) Alteration of T cell subtypes in beta-thalassaemia major: impact of ferritin level. JCDR 10(2):Dc8–Dc14

    Google Scholar 

  23. Kallies A (2008) Distinct regulation of effector and memory T-cell differentiation. Immunol Cell Biol 86(4):325–332

    Article  CAS  Google Scholar 

  24. Bao W, Zhong H, Li X, Lee MT, Schwartz J, Sheth S et al (2011) Immune regulation in chronically transfused allo-antibody responder and nonresponder patients with sickle cell disease and beta-thalassemia major. Am J Hematol 86(12):1001–1006

    Article  CAS  Google Scholar 

  25. Bozdogan G, Erdem E, Demirel GY, Yildirmak Y (2010) The role of Treg cells and FoxP3 expression in immunity of beta-thalassemia major AND beta-thalassemia trait patients. Pediatr Hematol Oncol 27(7):534–545

    Article  CAS  Google Scholar 

  26. Trzonkowski P, Szmit E, Mysliwska J, Mysliwski A (2006) CD4 + CD25 + T regulatory cells inhibit cytotoxic activity of CTL and NK cells in humans-impact of immunosenescence (Orlando, Fla). Clin Immunol 119(3):307–316

    Article  CAS  Google Scholar 

  27. Al-Ofairi BA, Barakat AB, Ghanim Hel D, Shehata IH, El-Sayed MH (2011) A study of innate and adaptive immune responses in beta-thalassemic patients with chronic hepatitis C virus infection. Egypt J Immunol 18(1):61–76

    PubMed  Google Scholar 

  28. Butthep P, Wisedpanichkij R, Jindadamrongwech S, Fucharoen S (2015) Elevated erythropoietin and cytokines levels are related to impaired reticulocyte maturation in thalassemic patients. Blood Cells Mol Dis 54(2):170–176

    Article  CAS  Google Scholar 

  29. Pourgheysari B, Khan N, Best D, Bruton R, Nayak L, Moss PA (2007) The cytomegalovirus-specific CD4 + T-cell response expands with age and markedly alters the CD4 + T-cell repertoire. J Virol 81(14):7759–7765

    Article  CAS  Google Scholar 

  30. Mendez-Lagares G, Diaz L, Correa-Rocha R, Leon Leal JA, Ferrando-Martinez S, Ruiz-Mateos E et al (2013) Specific patterns of CD4-associated immunosenescence in vertically HIV-infected subjects. Clin Microbiol Infect 19(6):558–565

    Article  CAS  Google Scholar 

  31. Albareda MC, Olivera GC, De Rissio AM, Postan M (2010) Assessment of CD8(+) T cell differentiation in Trypanosoma cruzi-infected children. Am J Trop Med Hyg 82(5):861–864

    Article  Google Scholar 

  32. Kern F, Khatamzas E, Surel I, Frommel C, Reinke P, Waldrop SL et al (1999) Distribution of human CMV-specific memory T cells among the CD8pos. subsets defined by CD57, CD27, and CD45 isoforms. Eur J Immunol 29(9):2908–2915

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deputy of Research and Technology of the Shahrekord University of Medical Sciences with the Grant No. 916 obtained by first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batoul Pourgheysari.

Ethics declarations

Conflict of interest

The authors declared no competing interests.

Ethics Committee

Ethical Approval for the study was obtained from the Shahrekord University of Medical Sciences Ethics Committee. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourgheysari, B., Karimi, L., Bagheri, R. et al. Low IL-2 Expressing T Cells in Thalassemia Major Patients: Is It Immune Aging. Indian J Hematol Blood Transfus 34, 653–661 (2018). https://doi.org/10.1007/s12288-018-0939-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-018-0939-8

Keywords

Navigation