The Inhibitory Effect of Epigallocatechin Gallate on the Viability of T Lymphoblastic Leukemia Cells is Associated with Increase of Caspase-3 Level and Fas Expression

  • Masome Ghasemi-Pirbaluti
  • Batoul Pourgheysari
  • Hedayatollah Shirzad
  • Zahra Sourani
  • Pezhman Beshkar
Original Article


Acute lymphoblastic leukemia is the most prevalent cancer in children. Novel components to help struggle aggressive malignancies and overcome some side effects of conventional treatments could be a promising strategy. Epigallocatechingallate (EGCG), have attracted the attention of scientists for prevention or treatment of some cancers. Jurkat cells were incubated with the different concentrations of EGCG (30–100 µm) for 24, 48, and 72 h and cell viability was investigated using MTS test. Apoptosis and the level of caspase 3 alterations were evaluated using flowcytometry and expression of Fas by Real Time PCR. EGCG decreased viability of cells with an inhibition concentration (IC50) of 82.8 ± 3.1, 68.8 ± 4 and 59.7 ± 4.8 μM in 24,48 and 72 h. 50, 70 and 100 µM concentrations of EGCG induced apoptosis in about 31, 40 and 71% of the cells, respectively. The mean value of caspase 3 positive cells in the presence of 50, 70 and 100 µm concentrations of EGCG was 19.3 ± 2.9, 29.5 ± 3.1 and 61.2 ± 3.4 respectively compared to 7.8 ± 1.1 in control with a significant difference at 100 µm concentration. Treatment with EGCG for 48 h enhanced the expression of Fas reaching to a significant level at 100 µM concentration. EGCG is effective in decrease cell viability, apoptosis induction and enhancement of caspase 3 and Fas expression level in jurkat cells. A comprehensive understanding of molecular events and pharmacokinetics of the component and experiments in animal models are required for dose determination and its interaction with other components of combination chemotherapy.


EGCG Jurkat cell line Apoptosis Caspase 3 Fas 



The authors would like to thank the Deputy of Research and Technology of the Shahrekord University of Medical Sciences for financial support of the project with the Grant No. 1317.


  1. 1.
    Stewart BW, Bray F, Forman D, Ohgaki H, Straif K, Ullrich A et al (2016) Cancer prevention as part of precision medicine: ‘plenty to be done’. Carcinogenesis 37(1):2–9CrossRefPubMedGoogle Scholar
  2. 2.
    Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 373(16):1541–1552CrossRefPubMedGoogle Scholar
  3. 3.
    Arreola R, Quintero-Fabian S, Lopez-Roa RI, Flores-Gutierrez EO, Reyes-Grajeda JP, Carrera-Quintanar L et al (2015) Immunomodulation and anti-inflammatory effects of garlic compounds. J Immunol Res 2015:401630PubMedPubMedCentralGoogle Scholar
  4. 4.
    Shirzad H, Taji F, Pourgheysari B, Raisi S, Rafieian KM (2012) Comparison of antitumour activities of heated and raw garlic extracts on fibrosarcoma in mice. J Babol Univ Med Sci 14(6):77–83Google Scholar
  5. 5.
    Senthilkumar R, Chen BA, Cai XH, Fu R (2014) Anticancer and multidrug-resistance reversing potential of traditional medicinal plants and their bioactive compounds in leukemia cell lines. Chin J Nat Med 12(12):881–894PubMedGoogle Scholar
  6. 6.
    Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res 66(5):2500–2505CrossRefPubMedGoogle Scholar
  7. 7.
    Butt MS, Sultan MT (2009) Green tea: nature’s defense against malignancies. Crit Rev Food Sci Nutr 49(5):463–473CrossRefPubMedGoogle Scholar
  8. 8.
    Stewart AJ, Mullen W, Crozier A (2005) On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea. Mol Nutr Food Res 49(1):52–60CrossRefPubMedGoogle Scholar
  9. 9.
    Adachi S, Nagao T, Ingolfsson HI, Maxfield FR, Andersen OS, Kopelovich L et al (2007) The inhibitory effect of (−)-epigallocatechin gallate on activation of the epidermal growth factor receptor is associated with altered lipid order in HT29 colon cancer cells. Cancer Res 67(13):6493–6501CrossRefPubMedGoogle Scholar
  10. 10.
    Rahimnejad T, Beshkar P, Shirzad H, Rafieiankopaei M, Safdari V, Asgarian Dehkordi N et al (2014) Effect of pterostilbene on cellular proliferation inhibition and induction of apoptosis in lymphoblastic leukemia cell line. J Babol Univ Med Sci 16(12):32–38Google Scholar
  11. 11.
    Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71(10):1397–1421CrossRefPubMedGoogle Scholar
  12. 12.
    Sadava D, Whitlock E, Kane SE (2007) The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Biochem Biophys Res Commun 360(1):233–237CrossRefPubMedGoogle Scholar
  13. 13.
    Okada N, Tanabe H, Tazoe H, Ishigami Y, Fukutomi R, Yasui K et al (2009) Differentiation-associated alteration in sensitivity to apoptosis induced by (−)-epigallocatechin-3-O-gallate in HL-60 cells. Biomed Res 30(4):201–206CrossRefPubMedGoogle Scholar
  14. 14.
    Khan N, Mukhtar H (2008) Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett 269(2):269–280CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE (2004) VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood 104(3):788–794CrossRefPubMedGoogle Scholar
  16. 16.
    Thabrew MI, Hughes RD, McFarlane IG (1997) Screening of hepatoprotective plant components using a HepG2 cell cytotoxicity assay. J Pharm Pharmacol 49(11):1132–1135CrossRefPubMedGoogle Scholar
  17. 17.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108CrossRefPubMedGoogle Scholar
  18. 18.
    Shanafelt TD, Lee YK, Call TG, Nowakowski GS, Dingli D, Zent CS et al (2006) Clinical effects of oral green tea extracts in four patients with low grade B-cell malignancies. Leuk Res 30(6):707–712CrossRefPubMedGoogle Scholar
  19. 19.
    Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12):1807–1821CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Alex AF, Spitznas M, Tittel AP, Kurts C, Eter N (2010) Inhibitory effect of epigallocatechin gallate (EGCG), resveratrol, and curcumin on proliferation of human retinal pigment epithelial cells in vitro. Curr Eye Res 35(11):1021–1033CrossRefPubMedGoogle Scholar
  21. 21.
    Li W, Wu JX, Tu YY (2010) Synergistic effects of tea polyphenols and ascorbic acid on human lung adenocarcinoma SPC-A-1 cells. J Zhejiang Univ Sci B 11(6):458–464CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wu D, Guo Z, Ren Z, Guo W, Meydani SN (2009) Green tea EGCG suppresses T cell proliferation through impairment of IL-2/IL-2 receptor signaling. Free Radic Biol Med 47(5):636–643CrossRefPubMedGoogle Scholar
  23. 23.
    Nishikawa T, Nakajima T, Moriguchi M, Jo M, Sekoguchi S, Ishii M et al (2006) A green tea polyphenol, epigallocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins. J Hepatol 44(6):1074–1082CrossRefPubMedGoogle Scholar
  24. 24.
    Rao SD, Pagidas K (2010) Epigallocatechin-3-gallate, a natural polyphenol, inhibits cell proliferation and induces apoptosis in human ovarian cancer cells. Anticancer Res 30(7):2519–2523PubMedGoogle Scholar
  25. 25.
    Kostin SF, McDonald DE, McFadden DW (2012) Inhibitory effects of (−)-epigallocatechin-3-gallate and pterostilbene on pancreatic cancer growth in vitro. J Surg Res 177(2):255–262CrossRefPubMedGoogle Scholar
  26. 26.
    Hou Z, Sang S, You H, Lee MJ, Hong J, Chin KV et al (2005) Mechanism of action of (−)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res 65(17):8049–8056CrossRefPubMedGoogle Scholar
  27. 27.
    Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO (2008) Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 103(2):509–519CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shim JH, Choi HS, Pugliese A, Lee SY, Chae JI, Choi BY et al (2008) (-)-Epigallocatechin gallate regulates CD3-mediated T cell receptor signaling in leukemia through the inhibition of ZAP-70 kinase. J Biol Chem 283(42):28370–28379CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chai PC, Long LH, Halliwell B (2003) Contribution of hydrogen peroxide to the cytotoxicity of green tea and red wines. Biochem Biophys Res Commun 304(4):650–654CrossRefPubMedGoogle Scholar
  30. 30.
    Nam S, Smith DM, Dou QP (2001) Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276(16):13322–13330CrossRefPubMedGoogle Scholar
  31. 31.
    Irimie AI, Braicu C, Zanoaga O, Pileczki V, Gherman C, Berindan-Neagoe I et al (2015) Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis and autophagy in oral cancer SSC-4 cells. Onco Targets Ther 8:461–470PubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang J, Xie Y, Feng Y, Zhang L, Huang X, Shen X et al (2015) (−)-Epigallocatechingallate induces apoptosis in B lymphoma cells via caspase-dependent pathway and Bcl-2 family protein modulation. Int J Oncol 46(4):1507–1515CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hsu YC, Liou YM (2011) The anti-cancer effects of (−)-epigallocatechin-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. J Cell Physiol 226(10):2721–2730CrossRefPubMedGoogle Scholar
  34. 34.
    Lin HY, Hou SC, Chen SC, Kao MC, Yu CC, Funayama S et al (2012) (−)-Epigallocatechin gallate induces Fas/CD95-mediated apoptosis through inhibiting constitutive and IL-6-induced JAK/STAT3 signaling in head and neck squamous cell carcinoma cells. J Agric Food Chem 60(10):2480–2489CrossRefPubMedGoogle Scholar
  35. 35.
    Jung JH, Yun M, Choo EJ, Kim SH, Jeong MS, Jung DB et al (2015) A derivative of epigallocatechin-3-gallate induces apoptosis via SHP-1-mediated suppression of BCR-ABL and STAT3 signalling in chronic myelogenous leukaemia. Br J Pharmacol 172(14):3565–3578CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fang CY, Wu CC, Hsu HY, Chuang HY, Huang SY, Tsai CH et al (2015) EGCG inhibits proliferation, invasiveness and tumor growth by up-regulation of adhesion molecules, suppression of gelatinases activity, and induction of apoptosis in nasopharyngeal carcinoma cells. Int J Mol Sci 16(2):2530–2558CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Soltani A, Pourgheysari B, Shirzad H, Sourani Z (2016) Antiproliferative and apoptosis-inducing activities of thymoquinone in lymphoblastic leukemia cell line. Indian J Hematol Blood Transfus (Epub)Google Scholar

Copyright information

© Indian Society of Haematology & Transfusion Medicine 2017

Authors and Affiliations

  • Masome Ghasemi-Pirbaluti
    • 1
    • 2
  • Batoul Pourgheysari
    • 3
    • 4
  • Hedayatollah Shirzad
    • 2
  • Zahra Sourani
    • 2
    • 5
  • Pezhman Beshkar
    • 6
  1. 1.Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
  2. 2.Department of ImmunologyShahrekord University of Medical SciencesShahrekordIran
  3. 3.Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
  4. 4.Pathology and Hematology DepartmentShahrekord University of Medical SciencesShahrekordIran
  5. 5.Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
  6. 6.Department of Medical Laboratory TechnologyShahrekord University of Medical SciencesShahrekordIran

Personalised recommendations