Der MKG-Chirurg

, Volume 11, Issue 1, pp 30–37 | Cite as

Plattenepithelkarzinome des Kopf-Hals-Bereichs

Von der Pathologie zur Therapie
  • S. Hartmann
  • C. M. Sayehli
  • K. Maurus
  • N. E. Bhola
  • R. C. Brands
  • A. C. Kübler
  • U. D. A. Müller-Richter
Leitthema
  • 68 Downloads

Zusammenfassung

Plattenepithelkarzinome der Kopf-Hals-Region (HNSCC) sind nach wie vor eine therapeutische Herausforderung. Auch heute stirbt noch etwa jeder zweite Patient innerhalb von 5 Jahren nach Diagnosestellung. Weiterentwicklungen im Bereich der Diagnostik, Therapie und Nachbehandlung konnten in den letzten beiden Dekaden nur eine geringfügige Verbesserung der Überlebensraten erwirken. Der Überbegriff Plattenepithelkarzinom wird der zugrunde liegenden molekularen Pathologie nicht gerecht. Im Zeitalter der Hochdurchsatzmethoden (z. B. „next generation sequencing“) zeigen vergangene und neue Ergebnisse, dass ursächliche und am Fortschreiten der Erkrankung beteiligte Prozesse komplex und heterogen sind. In der Vergangenheit konnten diese Erkenntnisse nur mit sehr begrenztem Erfolg und auch nur in der Palliation in Behandlungsstrategien umgesetzt werden, was sich beispielhaft an der Rolle des monoklonalen Antikörpers gegen den epidermalen Wachstumsfaktorrezeptor (EGFR) Cetuximab deutlich zeigt. Mit humanen Papillomaviren (HPV) assoziierte Karzinome betreffen v. a. den Oropharynx und sind auch im Vergleich zu „klassischen“ HPV-negativen Karzinomen mit anderen genetischen Alterationen assoziiert. Die Erfolge der Immuntherapie, am Beispiel von Nivolumab im Rahmen der CheckMate-141-Studie demonstriert, halten auch im Bereich der HNSCC Einzug und eröffnen erstmals seit etwa einer Dekade neue Behandlungsmöglichkeiten. In immuntherapeutischen Studien zeigen Ansprechraten von etwa 20 %, dass die Suche nach Ursachen und prädiktiven Markern noch nicht abgeschlossen ist. Zukünftig gilt es, die zahlreichen unterschiedlichen Einflussfaktoren (Genetik, HPV, Tumormikromilieu, T‑Zell-Infiltration etc.) zu ordnen, zu gewichten und für den Patienten in klinische Handlungsanweisungen umzusetzen.

Schlüsselwörter

Onkologie Individualisierte Medizin Immuntherapie Genetik Humanes Papillomavirus 

Head and neck squamous cell carcinoma

From pathology to treatment

Abstract

Effective treatment of head and neck squamous cell carcinoma (HNSCC) patients still remains a challenge. Currently, five out of ten patients die within 5 years after diagnosis. During the past two decades, improvements in diagnostics, treatment, and aftercare have only modestly improved survival rates The histological term “squamous cell carcinoma” does not comprehensively explain the underlying molecular pathology. In the age of high-throughput methodology (such as next-generation sequencing), past and present results show that causal processes and those involved in disease progression are complex and heterogeneous. In the past, these findings could only be implemented with very limited success in the palliative setting, as clearly demonstrated by the role of the epidermal growth factor receptor (EGFR) monoclonal antibody cetuximab. Human papilloma virus (HPV)-associated carcinomas affect mainly the oropharynx, and are also associated with other genetic alterations compared to those in “classical” HPV-negative carcinomas. The success of immunotherapy, exemplified by nivolumab as part of the Checkmate 141 study, is also being implemented in the field of NHSCC opening new treatment possibilities for the first time in about a decade. In immunotherapeutic studies, response rates of about 20% indicate that the search for causes and predictive markers has not yet been completed. In the future, the different influencing factors (genetics, HPV, tumor microenvironment, T‑cell infiltration, etc.) must be classified, weighed, and translated into practical clinical guidelines for the patient.

Keywords

Oncology Individualized medicine Immunotherapy Genetics Human papilloma virus 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

N.E. Bhola, K. Maurus und A.C. Kübler geben an, dass kein Interessenkonflikt besteht. S. Hartmann, C.M. Sayehli, R.C. Brands und U.D.A. Müller-Richter sind oder waren Prüfärzte für die Firma Bristol-Myers Squibb (BMS). C.M. Sayehli und U.D.A. Müller-Richter erhielten von BMS Reiseunterstützung und Aufwandsentschädigung für die Teilnahme an Sitzungen des Medical Advisory Boards. U.D.A. Müller-Richter ist oder war weiterhin als Verantwortlicher mit der Durchführung klinischer Studien für die Firmen Merck Sharp & Dohme, AstraZeneca, Sysmex und Novartis betraut.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Cancer Genome Atlas Network (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576–582CrossRefGoogle Scholar
  2. 2.
    Chalmers ZR, Connelly CF, Fabrizio D et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dimaio D, Petti LM (2013) The E5 proteins. Virology 445:99–114CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ferris RL, Blumenschein G Jr., Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gillison ML, Alemany L, Snijders PJ et al (2012) Human papillomavirus and diseases of the upper airway: head and neck cancer and respiratory papillomatosis. Vaccine 30(Suppl 5):F34–54CrossRefPubMedGoogle Scholar
  6. 6.
    Goodman AM, Kato S, Bazhenova L et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608.  https://doi.org/10.1158/1535-7163.MCT-17-0386 CrossRefPubMedGoogle Scholar
  7. 7.
    Grandis JR, Tweardy DJ (1993) Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res 53:3579–3584PubMedGoogle Scholar
  8. 8.
    Hanken H, Grobe A, Cachovan G et al (2014) CCND1 amplification and cyclin D1 immunohistochemical expression in head and neck squamous cell carcinomas. Clin Oral Investig 18:269–276CrossRefPubMedGoogle Scholar
  9. 9.
    Harrington KJ, Ferris RL, Blumenschein G Jr. et al (2017) Nivolumab versus standard, single-agent therapy of investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141): health-related quality-of-life results from a randomised, phase 3 trial. Lancet Oncol 18:1104–1115CrossRefPubMedGoogle Scholar
  10. 10.
    Hedberg ML, Goh G, Chiosea SI et al (2016) Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. J Clin Invest 126:169–180CrossRefPubMedGoogle Scholar
  11. 11.
    Huang SH, O’sullivan B (2017) Overview of the 8th Edition TNM classification for head and neck cancer. Curr Treat Options Oncol 18:40CrossRefPubMedGoogle Scholar
  12. 12.
    Keck MK, Zuo Z, Khattri A et al (2015) Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin Cancer Res 21:870–881CrossRefPubMedGoogle Scholar
  13. 13.
    Larkins E, Blumenthal GM, Yuan W et al (2017) FDA Approval Summary: Pembrolizumab for the treatment of recurrent or metastatic head and neck squamous cell carcinoma with disease progression on or after platinum-containing chemotherapy. Oncologist 22:873–878CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lui VW, Hedberg ML, Li H et al (2013) Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov 3:761–769CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mcmahon J, O’brien CJ, Pathak I et al (2003) Influence of condition of surgical margins on local recurrence and disease-specific survival in oral and oropharyngeal cancer. Br J Oral Maxillofac Surg 41:224–231CrossRefPubMedGoogle Scholar
  16. 16.
    Munger K, Phelps WC, Bubb V et al (1989) The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63:4417–4421PubMedPubMedCentralGoogle Scholar
  17. 17.
    Parfenov M, Pedamallu CS, Gehlenborg N et al (2014) Characterization of HPV and host genome interactions in primary head and neck cancers. Proc Natl Acad Sci USA 111:15544–15549CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Quinlan-Davidson SR, Mohamed ASR, Myers JN et al (2017) Outcomes of oral cavity cancer patients treated with surgery followed by postoperative intensity modulated radiation therapy. Oral Oncol 72:90–97CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Seiwert TY, Jagadeeswaran R, Faoro L et al (2009) The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res 69:3021–3031CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Seiwert T, Sarantopoulos J, Kallender H et al (2013) Phase II trial of single-agent foretinib (GSK1363089) in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Invest New Drugs 31:417–424PubMedGoogle Scholar
  22. 22.
    Seiwert TY, Burtness B, Mehra R et al (2016) Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 17:956–965CrossRefPubMedGoogle Scholar
  23. 23.
    Stewart JS, Cohen EE, Licitra L et al (2009) Phase III study of gefitinib compared with intravenous methotrexate for recurrent squamous cell carcinoma of the head and neck [corrected]. J Clin Oncol 27:1864–1871CrossRefPubMedGoogle Scholar
  24. 24.
    Stransky N, Egloff AM, Tward AD et al (2011) The mutational landscape of head and neck squamous cell carcinoma. Science 333:1157–1160CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Thompson L (2006) World Health Organization classification of tumours: pathology and genetics of head and neck tumours. Ear Nose Throat J 85:74PubMedGoogle Scholar
  26. 26.
    Vermorken JB, Trigo J, Hitt R et al (2007) Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol 25:2171–2177CrossRefPubMedGoogle Scholar
  27. 27.
    Vermorken JB, Mesia R, Rivera F et al (2008) Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 359:1116–1127CrossRefPubMedGoogle Scholar
  28. 28.
    Wu YM, Su F, Kalyana-Sundaram S et al (2013) Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov 3:636–647CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2017

Authors and Affiliations

  • S. Hartmann
    • 1
  • C. M. Sayehli
    • 2
  • K. Maurus
    • 3
  • N. E. Bhola
    • 4
  • R. C. Brands
    • 1
  • A. C. Kübler
    • 1
  • U. D. A. Müller-Richter
    • 1
  1. 1.Klinik und Poliklinik für Mund‑, Kiefer- und Plastische GesichtschirurgieUniversitätsklinikum WürzburgWürzburgDeutschland
  2. 2.Medizinische Klinik und Poliklinik II, Lehrstuhl für Translationale OnkologieUniversitätsklinikum WürzburgWürzburgDeutschland
  3. 3.Pathologisches InstitutUniversität WürzburgWürzburgDeutschland
  4. 4.Department of OtolaryngologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations