Prediction of pacing and cornering strategies during cycling individual time trials with optimal control


A new dynamic model for predicting road cycling individual time trials with optimal control was created. The model included both lateral and longitudinal bicycle dynamics, 3D road geometry, and anaerobic source depletion. The prediction of the individual time trial performance was formulated as an optimal control problem and solved with an indirect approach to find the pacing and cornering strategies in the respect of the physical/physiological limits of the system. The model was tested against the velocity and power output data collected by professional cyclists in two individual time trial Giro d’Italia data sets: the first data set (Rovereto, n = 15) was used to adjust the parameters of the model and the second data set (Verona, n = 13) was used to test the predictive ability of the model. The simulated velocity fell in the \(\mathrm{CI}_{95\%}\) of the experimental data for 32 and 18% of the duration of the course for Rovereto and Verona stages, respectively. The simulated power output fell in the \(\mathrm{CI}_{95\%}\) of the experimental data for 50 and 25% of the duration of the course for Rovereto and Verona stages respectively. This framework can be used to input rider’s physical/physiological characteristics, 3D road geometry, and conditions to generate realistic velocity and power output predictions in individual time trials. It, therefore, constitutes a tool that could be used by coaches and athletes to plan the pacing and cornering strategies before the race.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Mujika I, Padilla S (2001) Physiological and performance characteristics of male professional road cyclists. Sports Med 31(7):479–487

    Google Scholar 

  2. 2.

    Too D (1990) Biomechanics of cycling and factors affecting performance. Sports Med 10(5):286–302

    Google Scholar 

  3. 3.

    Foley J, Bird S, White J (1989) Anthropometric comparison of cyclists from different events. Br J Sports Med 23(1):30–33

    Google Scholar 

  4. 4.

    Abbiss CR, Laursen PB (2008) Describing and understanding pacing strategies during athletic competition. Sports Med 38(3):239–252

    Google Scholar 

  5. 5.

    Lamberts RP, Lambert MI, Swart J, Noakes TD (2012) Allometric scaling of peak power output accurately predicts time trial performance and maximal oxygen consumption in trained cyclists. Br J Sports Med 46(1):36–41

    Google Scholar 

  6. 6.

    Smith J, Dangelmaier B, Hill D (1999) Critical power is related to cycling time trial performance. Int J Sports Med 20(06):374–378

    Google Scholar 

  7. 7.

    Lucia A, Hoyos J, Perez M, Santalla A, Earnest CP, Chicharro J (2004) Which laboratory variable is related with time trial performance time in the tour de france? Br J Sports Med 38(5):636–640

    Google Scholar 

  8. 8.

    Atkinson G, Brunskill A (2000) Pacing strategies during a cycling time trial with simulated headwinds and tailwinds. Ergonomics 43(10):1449–1460

    Google Scholar 

  9. 9.

    Cangley P, Passfield L, Carter H, Bailey M (2011) The effect of variable gradients on pacing in cycling time-trials. Int J Sports Med 32(02):132–136

    Google Scholar 

  10. 10.

    Foster C, Snyder A, Thompson NN, Green MA, Foley M, Schrager M (1993) Effect of pacing strategy on cycle time trial performance. Med Sci Sports Exerc 25(3):383–388

    Google Scholar 

  11. 11.

    Earnest CP, Foster C, Hoyos J, Muniesa C, Santalla A, Lucia A (2009) Time trial exertion traits of cycling’s grand tours. Int J Sports Med 30(04):240–244

    Google Scholar 

  12. 12.

    Olds T (2001) Modelling human locomotion. Sports Med 31(7):497–509

    Google Scholar 

  13. 13.

    Faria EW, Parker DL, Faria IE (2005) The science of cycling: factors affecting performance—part 2. Sports Med 35(4):313–338

    Google Scholar 

  14. 14.

    Jeukendrup AE, Martin J (2001) Improving cycling performance. Sports Med 31(7):559–569

    Google Scholar 

  15. 15.

    Maroński R (1994) On optimal velocity during cycling. J Biomech 27(2):205–213

    Google Scholar 

  16. 16.

    Gordon S (2005) Optimising distribution of power during a cycling time trial. Sports Eng 8(2):81–90

    Google Scholar 

  17. 17.

    Dahmen T, Wolf S, Saupe D (2012) Applications of mathematical models of road cycling. IFAC Proc Vol 45(2):804–809

    Google Scholar 

  18. 18.

    De Jong J, Fokkink R, Olsder GJ, Schwab A (2017) The individual time trial as an optimal control problem. Proc Inst Mech Eng Part P J Sports Eng Technol 231(3):200–206

    Google Scholar 

  19. 19.

    Yamamoto S (2018) Optimal pacing in road cycling using a nonlinear power constraint. Sports Eng 21(3):199–206

    Google Scholar 

  20. 20.

    Wolf S, Biral F, Saupe D (2019) Adaptive feedback system for optimal pacing strategies in road cycling. Sports Eng 22(1):6

    Google Scholar 

  21. 21.

    Morton RH (1996) A 3-parameter critical power model. Ergonomics 39:611–9

    Google Scholar 

  22. 22.

    Sundström D, Carlsson P, Tinnsten M (2014) Comparing bioenergetic models for the optimisation of pacing strategy in road cycling. Sports Eng 17(4):207–215

    Google Scholar 

  23. 23.

    Di Prampero P, Cortili G, Mognoni P, Saibene F (1979) Equation of motion of a cyclist. J Appl Physiol 47(1):201–206

    Google Scholar 

  24. 24.

    Olds TS, Norton K, Lowe E, Olive S, Reay F, Ly S (1995) Modeling road-cycling performance. J Appl Physiol 78(4):1596–1611

    Google Scholar 

  25. 25.

    Martin JC, Milliken DL, Cobb JE, McFadden KL, Coggan AR (1998) Validation of a mathematical model for road cycling power. J Appl Biomech 14(3):276–291

    Google Scholar 

  26. 26.

    Muller S, Uchanski M, Hedrick K (2003) Estimation of the maximum tire-road friction coefficient. J Dyn Syst Meas Contr 125(4):607–617

    Google Scholar 

  27. 27.

    de Jong J, Fokkink R, Olsder GJ, Schwab A (2016) A variational approach to determine the optimal power distribution for cycling in a time trial. Procedia Eng 147:907–911

    Google Scholar 

  28. 28.

    Sundström D, Carlsson P, Tinnsten M (2014) The influence of course bends on pacing strategy in road cycling. Procedia Eng 72:835–840

    Google Scholar 

  29. 29.

    Biral F, Da Lio M, Lot R, Sartori R (2010) An intelligent curve warning system for powered two wheel vehicles. Eur Transport Res Rev 2(3):147–156

    Google Scholar 

  30. 30.

    Rice RS (1973) Measuring car-driver interaction with the g-g diagram. In: SAE Technical Paper, SAE International, p 2

  31. 31.

    Biral F, Bertolazzi E, Mauro DL (2014) The optimal manoeuvre. Modell Simul Control Two-Wheeled Vehic 2014:119–154

    Google Scholar 

  32. 32.

    Tavernini D, Massaro M, Velenis E, Katzourakis DI, Lot R (2013) Minimum time cornering: the effect of road surface and car transmission layout. Vehic Syst Dyn 51(10):1533–1547

    Google Scholar 

  33. 33.

    Kegelman JC, Harbott LK, Gerdes JC (2017) Insights into vehicle trajectories at the handling limits: analysing open data from race car drivers. Vehic Syst Dyn 55(2):191–207

    Google Scholar 

  34. 34.

    Sharp RS (2008) On the stability and control of the bicycle. Appl Mech Rev 61(6):060803

    Google Scholar 

  35. 35.

    Astrom KJ, Klein RE, Lennartsson A (2005) Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Syst Mag 25:26–47

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Cangley P (2012) Aspects of modelling performance in competitive cycling. PhD thesis, University of Brighton

  37. 37.

    Lot R, Biral F (2014) A curvilinear abscissa approach for the lap time optimization of racing vehicles. IFAC Proc Vol 47(3):7559–7565

    Google Scholar 

  38. 38.

    Biral F, Lot R (2009) An interpretative model of gg diagrams of racing motorcycle. In: Proceedings of the 3rd ICMEM international conference on mechanical engineering and mechanics. Beijing, Repubblica Popolare Cinese, Ottobre, pp 21–23

  39. 39.

    Crouch TN, Burton D, LaBry ZA, Blair KB (2017) Riding against the wind: a review of competition cycling aerodynamics. Sports Eng 20(2):81–110

    Google Scholar 

  40. 40.

    Burke E (2003) High-tech cycling. Human Kinetics, Champaign

    Google Scholar 

  41. 41.

    Jones AM, Vanhatalo A (2017) The ‘critical power’concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med 47(1):65–78

    Google Scholar 

  42. 42.

    Shearman S, Dwyer D, Skiba P, Townsend N (2016) Modeling intermittent cycling performance in hypoxia using the critical power concept. Med Sci Sports Exerc 48(3):527–535

    Google Scholar 

  43. 43.

    Ashtiani F, Sreedhara VSM, Vahidi A, Hutchison R, Mocko G (2019) Experimental modeling of cyclists fatigue and recovery dynamics enabling optimal pacing in a time trial. In: 2019 American Control Conference (ACC), IEEE, pp 5083–5088

  44. 44.

    Biral F, Bertolazzi E, Bosetti P (2016) Notes on numerical methods for solving optimal control problems. IEEJ J Industry Appl 5(2):154–166

    Google Scholar 

  45. 45.

    Rao AV (2009) A survey of numerical methods for optimal control. Adv Astronaut Sci 135(1):497–528

    Google Scholar 

  46. 46.

    Bertolazzi E, Biral F, Da Lio M (2005) Symbolic-numeric indirect method for solving optimal control problems for large multibody systems. Multibody Sys Dyn 13(2):233–252

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Bays PM, Wolpert DM (2007) Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol 578(2):387–396

    Google Scholar 

  48. 48.

    Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7(9):907–915

    Google Scholar 

  49. 49.

    Viviani P, Flash T (1995) Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J Exp Psychol Hum Percept Perform 21(1):32

    Google Scholar 

  50. 50.

    Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394(6695):780–784

    Google Scholar 

  51. 51.

    Flash T, Meirovitch Y, Barliya A (2013) Models of human movement: trajectory planning and inverse kinematics studies. Robot Autonom Syst 61(4):330–339

    Google Scholar 

  52. 52.

    Harris CM (2009) Biomimetics of human movement: functional or aesthetic? Bioinspiration Biomimetics 4(3):033001

    Google Scholar 

  53. 53.

    Jeukendrup AE, Craig NP, Hawley JA (2000) The bioenergetics of world class cycling. J Sci Med Sport 3(4):414–433

    Google Scholar 

  54. 54.

    Housh TJ, Devries HA, Housh DJ, Tichy MW, Smyth KD, Tichy A (1991) The relationship between critical power and the onset of blood lactate accumulation. J Sports Med Phys Fitness 31(1):31–36

    Google Scholar 

  55. 55.

    Padilla S, Mujika I, Orbananos J, Angulo F (2000) Exercise intensity during competition time trials in professional road cycling. Med Sci Sports Exerc 32(4):850–856

    Google Scholar 

  56. 56.

    FRIERE SKIBAP, Chidnok W, Vanhatalo A, Jones AM (2012) Modeling the expenditure and reconstitution of work capacity above critical power. Med Sci Sports Exerc 44(8):1526–1532

    Google Scholar 

  57. 57.

    Fintelman D, Sterling M, Hemida H, Li F (2015) The effect of time trial cycling position on physiological and aerodynamic variables. J Sports Sci 33(16):1730–1737

    Google Scholar 

  58. 58.

    Reiser RF, Maines JM, Eisenmann JC, Wilkinson JG (2002) Standing and seated wingate protocols in human cycling. a comparison of standard parameters. Eur J Appl Physiol 88(1–2):152–157

    Google Scholar 

  59. 59.

    Bouillod A, Pinot J, Valade A, Cassirame J, Soto-Romero G, Grappe F (2018) Influence of standing position on mechanical and energy costs in uphill cycling. J Biomech 72:99–105

    Google Scholar 

  60. 60.

    Dal Bianco N, Bertolazzi E, Biral F, Massaro M (2019) Comparison of direct and indirect methods for minimum lap time optimal control problems. Vehic Syst Dyn 57(5):665–696

    Google Scholar 

  61. 61.

    Swain DP (1997) A model for optimizing cycling performance by varying power on hills and in wind. Med Sci Sports Exerc 29(8):1104–1108

    Google Scholar 

  62. 62.

    Fayazi SA, Wan N, Lucich S, Vahidi A, Mocko G (2013) Optimal pacing in a cycling time-trial considering cyclist’s fatigue dynamics. In: 2013 American Control Conference, IEEE, pp 6442–6447

  63. 63.

    Sundström D, Bäckström M, Carlsson P, Tinnsten M (2015) Optimal distribution of power output and braking for corners in road cycling in Science and Cycling. Utrecht 1–2:2015

    Google Scholar 

  64. 64.

    Fitton B, Symons D (2018) A mathematical model for simulating cycling: applied to track cycling. Sports Eng 21(4):409–418

    Google Scholar 

  65. 65.

    Zignoli A, Biral F, Pellegrini B, Jinha A, Herzog W, Schena F (2017) An optimal control solution to the predictive dynamics of cycling. Sport Sci Health 13(2):381–393

    Google Scholar 

Download references


We are deeply thankful to A. Giorgi, M. Quad, and D. Sanders and all the professional riders for providing the racing data. We thank P. Menaspà for the fruitful discussions on models and modelling methodologies. We thank E. Bertolazzi for providing valuable assistance during the optimal control problem formulation.


Partially funded by the Fondazione Cassa di Risparmio di Trento e Rovereto (CARITRO) (Grant Number: 2017.379).

Author information



Corresponding author

Correspondence to Andrea Zignoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

6. Appendix

6. Appendix

6.1 Vehicle dynamics and bioenergetics

6.2 Numerical values

  • m = 77 kg, cyclist’s body mass + bicycle mass

  • \(I_X\) = 77 \(\mathrm{kgm}^2\),

  • h = 1.2 m, height of the centre of mass from road surface

  • \(\rho\) = 1.23 \(\mathrm{kg}/\mathrm{m}^3\)

  • \(A_\mathrm{f}\) = 0.35 \(\mathrm{m}^2\), frontal area

  • kv = \(1/2 A_\mathrm{f} C_{\rm D}\rho\) = 0.13 kg/m, air drag force coefficient

  • \(c_\mathrm{rr}\)= 0.0035, rolling friction coefficient

  • g= 9.81 \(\mathrm{m/s}^2\), constant of gravity

  • L= 1.4 m, bicycle length

  • \(\delta _{\rm max}\)= 0.52 rad, maximal steering angle

  • \(vW_{\mathrm{n}_{\rm max}}\) = 50 W/s, maximal power output variation

  • \(\mathrm{ay}_{\max}=\mathrm{ax}_{\max}\)= 9.81 \(\mathrm{m/s}^2\), maximal acceleration \(({\mu_{\mathrm y}=\mu_{\mathrm x}=1})\)

  • \(W_{{\rm J}_1}\) = 0.01, steering angle weight in the objective function

  • \(W_{{\rm J}_2}\) =0.01, power output variation weight in the objective function

  • \(n_0\) = 0 m, initial lateral displacement

  • \(\alpha _0\) = 0 rad, initial attitude

  • \(\phi _0\) = 0 rad, initial roll angle

  • \(\phi _\mathrm{dot0}\) = 0 rad/s, initial roll rotational velocity

  • \(\delta _\mathrm{n0}\) = 0, initial normalised steering angle

  • \(W_\mathrm{n0}\) = \(W_{\rm C}/W_\mathrm{max}\), initial normalised power output

  • \(EAn_0\) = 22.000 J, initial anaerobic sources

  • \(W_\mathrm{C}\) = 440 W, critical power output

  • \(W_\mathrm{max}\) = 1870 W, maximal power output

  • \(\mathrm{EAnzero}\)= 22.000 J, maximal anaerobic sources

  • \(L_\mathrm{width}\) = 4 m, left road width

  • \(R_\mathrm{width}\) = 4 m, right road width

  • \(Vw_0\) = 2.6 and 2.7 \(\mathrm{m/s}^2\), wind velocity (Rovereto and Verona ITT, respectively)

  • wD = \(-\pi /2\) and \(- 3/4\pi\), wind direction (Rovereto and Verona ITT, respectively)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zignoli, A., Biral, F. Prediction of pacing and cornering strategies during cycling individual time trials with optimal control. Sports Eng 23, 13 (2020).

Download citation


  • Bike handling
  • Tyre-road friction coefficient
  • Bicycle dynamics
  • Trajectory
  • Professional cycling