Advertisement

Sports Engineering

, Volume 21, Issue 2, pp 103–114 | Cite as

Free kick goals in football: an unlikely success between failure and embarrassment

  • Søren Nørgaard Sørensen
  • John Rasmussen
Original Article

Abstract

We develop and use a numerical model to investigate the window of opportunity of free kicks in association football. The planar multibody forward dynamics model comprises a two segment leg model with joint actuations, a football, a wall and the turf. Contact mechanics is defined to model the impact of the foot and the ball’s interaction with the different elements in the environment. The optimum kick is determined using the global optimization algorithm differential evolution, requiring millions of kick simulations. The sensitivity of various solutions to parameter perturbation is investigated. It is concluded that toe kicks are theoretically superior to instep kicks, but are difficult to perform reliably. The results also show that small perturbations in parameters can lead to embarrassingly failed kicks.

Keywords

Football free kick Forward dynamics Motion prediction Computer simulation Optimization Soccer 

References

  1. 1.
    Ackermann M, Van den Bogert AJ (2012) Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy. J Biomech 45(7):1293–1298CrossRefGoogle Scholar
  2. 2.
    Andersen T, Dörge HC, Thomsen FI (1999) Collisions in soccer kicking. Sports Eng 2(2):121–125CrossRefGoogle Scholar
  3. 3.
    Asai T, Carré M, Akatsuka T, Haake S (2002) The curve kick of a football I: impact with the foot. Sports Eng 5(4):183–192CrossRefGoogle Scholar
  4. 4.
    Asai T, Seo K, Kobayashi O, Sakashita R (2007) Fundamental aerodynamics of the soccer ball. Sports Eng 10(2):101–109CrossRefGoogle Scholar
  5. 5.
    Bray K, Kerwin DG (2003) Modelling the flight of a soccer ball in a direct free kick. J Sports Sci 21(2):75–85.  https://doi.org/10.1080/0264041031000070994 CrossRefGoogle Scholar
  6. 6.
    Carre MJ, Haake SJ, Asai T, Akatsuka T (2002) The curve kick of a football II: flight through the air. Sports Eng 1(5):193–200.  https://doi.org/10.1046/j.1460-2687.2002.00109.x CrossRefGoogle Scholar
  7. 7.
    Cook BG, Goff JE (2006) Parameter space for successful soccer kicks. Eur J Phys 27(4):865–874.  https://doi.org/10.1088/0143-0807/27/4/017 CrossRefGoogle Scholar
  8. 8.
    Goff JE (2013) A review of recent research into aerodynamics of sport projectiles. Sports Eng 16(3):137–154CrossRefGoogle Scholar
  9. 9.
    Goff JE, Carré MJ (2009) Trajectory analysis of a soccer ball. Am J Phys 77(11):1020–1027CrossRefGoogle Scholar
  10. 10.
    Gonthier Y, McPhee J, Lange C, Piedboeuf JC (2004) A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst Dyn 11(3):209–233CrossRefzbMATHGoogle Scholar
  11. 11.
    Haake S, Goodwill S, Carre M (2007) A new measure of roughness for defining the aerodynamic performance of sports balls. Proc Inst Mech Eng Part C J Mech Eng Sci 221(7):789–806CrossRefGoogle Scholar
  12. 12.
    Heinen F, Sørensen SN, King M, Lewis M, Lund ME, Rasmussen J, de Zee M (2017) Muscle-tendon unit parameter estimation of a Hill-type musculoskeletal model based on experimentally obtained subject-specific torque profiles. Comput Methods Biomech Biomed Eng (In review)Google Scholar
  13. 13.
    James D, Haake S (2009) The spin decay of sports balls in flight (p172). In: The engineering of sport vol 7. Springer, Berlin, pp 165–170Google Scholar
  14. 14.
    Lees A, Asai T, Andersen TB, Nunome H, Sterzing T (2010) The biomechanics of kicking in soccer: a review. J Sports Sci 28(8):805–17.  https://doi.org/10.1080/02640414.2010.481305 CrossRefGoogle Scholar
  15. 15.
    Link D, Kolbinger O, Weber H, Stöckl M (2016) A topography of free kicks in soccer. J Sports Sci 34(24):2312–2320.  https://doi.org/10.1080/02640414.2016.1232487 CrossRefGoogle Scholar
  16. 16.
    Machado M, Moreira P, Flores P, Lankarani HM (2012) Compliant contact force models in multibody dynamics: evolution of the hertz contact theory. Mech Mach Theory 53:99–121CrossRefGoogle Scholar
  17. 17.
    Mehta RD (1985) Aerodynamics of sports balls. Annu Rev Fluid Mech 17(1):151–189CrossRefGoogle Scholar
  18. 18.
    Nikravesh PE (2008) Planar multibody dynamics: formulation, programming and applications. CRC Press, Boca RatonzbMATHGoogle Scholar
  19. 19.
    Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer Science & Business Media, BerlinzbMATHGoogle Scholar
  20. 20.
    Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Winter DA (1990) Biomechanics and motor control of human movement. Wiley, New YorkGoogle Scholar
  22. 22.
    Yiannakos A, Armatas V (2006) Evaluation of the goal scoring patterns in European Championship in Portugal 2004. Int J Perform Anal Sport 6(1):178–188CrossRefGoogle Scholar

Copyright information

© International Sports Engineering Association 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Manufacturing EngineeringAalborg UniversityAalborgDenmark

Personalised recommendations