Enhancing chemosensitivity of wild-type and drug-resistant MDA-MB-231 triple-negative breast cancer cell line to doxorubicin by silencing of STAT 3, Notch-1, and β-catenin genes

Abstract

Background/objective

The absence of receptors in triple-negative breast cancer limits therapeutic choices utilized in clinical management of the disease. Doxorubicin is an important member of therapeutic regimens that is hindered by emergence of resistance. The current work aim to investigate of therapeutic potential of single and combinations of siRNA molecules designed for silencing STAT 3, Notch-1, and β-catenin genes in wild type and doxorubicin resistant MDA-MB-231 triple negative breast cancer cell line.

Methods

Doxorubicin resistant MDA-MB-231 cell line was developed and characterized for the expression of multidrug resistance-related genes, CD44/CD24 markers, inflammatory cytokines, and the expression of STAT 3, Notch-1, and β-catenin targeted genes. Further, the effect of single and combinations of siRNA on cell viability and chemosensitivity of both wild type MDA-MB-231 cells (MDA-MB-231/WT) and doxorubicin resistant MDA-MB-231 cells (MDA-MB-231/DR250) were assessed by MTT assay.

Results

The IC50 of doxorubicin was 10-folds higher in MDA-MB-231/DR250 resistant cells compared to MDA-MB-231/WT control cells, 1.53 ± 0.24 μM compared to 0.16 ± 0.02 μM, respectively. The expression of targeted genes was higher in resistant cells compared to control cells, 3.6 ± 0.16 folds increase in β-catenin, 2.7 ± 0.09 folds increase in Notch-1, and 1.8 ± 0.09 folds increase in STAT-3. Following treatment with siRNAs, there was a variable reduction in mRNA expression of each of the targeted genes compared to scrambled siRNA and a reduction in IC50 in both cell lines. The effect of a combination of three genes produced the largest reduction in IC50 in resistant cell line.

Conclusion

Our study showed that the silencing of single and multiple genes involved in drug resistance and tumor progression by siRNA can enhance the chemosensitivity of cancer cells to conventional chemotherapy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Lin NU, Vanderplas A, Hughes ME, Theriault RL, Edge SB, Wong YN, et al. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer. 2012;118:5463–72.

    Article  Google Scholar 

  2. 2.

    Irvin WJ Jr, Carey LA. What is triple-negative breast cancer? Eur J Cancer. 2008;44:2799–805.

    CAS  Article  Google Scholar 

  3. 3.

    Group EBCTC. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100 000 women in 123 randomised trials. Lancet. 2012;379:432–44.

    Article  Google Scholar 

  4. 4.

    Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13:2329–34.

    CAS  Article  Google Scholar 

  5. 5.

    Zahreddine H, Borden KL. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013;4:28.

    Article  Google Scholar 

  6. 6.

    Zhang XY, Zhang PY. Combinations in multimodality treatments and clinical outcomes during cancer. Oncol Lett. 2016;12:4301–4.

    Article  Google Scholar 

  7. 7.

    Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65:157–70.

    CAS  Article  Google Scholar 

  8. 8.

    Chen DR, Lu DY, Lin HY, Yeh WL. Mesenchymal stem cell-induced doxorubicin resistance in triple negative breast cancer. Biomed Res Int. 2014;2014:532161.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Alshaer W, Alqudah DA, Wehaibi S, Abuarqoub D, Zihlif M, Hatmal MM, et al. Downregulation of STAT3, beta-catenin, and Notch-1 by single and combinations of siRNA treatment enhance chemosensitivity of wild type and doxorubicin resistant MCF7 breast cancer cells to doxorubicin. Int J Mol Sci. 2019;20:3696.

    CAS  Article  Google Scholar 

  10. 10.

    Li L, Tang P, Li S, Qin X, Yang H, Wu C, et al. Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy. Med Oncol. 2017;34:180.

    CAS  Article  Google Scholar 

  11. 11.

    Gariboldi MB, Ravizza R, Molteni R, Osella D, Gabano E, Monti E. Inhibition of Stat3 increases doxorubicin sensitivity in a human metastatic breast cancer cell line. Cancer Lett. 2007;258:181–8.

    CAS  Article  Google Scholar 

  12. 12.

    Lin S-Y, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, et al. β-Catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci. 2000;97:4262–6.

    CAS  Article  Google Scholar 

  13. 13.

    Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.

    CAS  Article  Google Scholar 

  14. 14.

    Aster JC, Pear WS, Blacklow SC. The varied roles of Notch in cancer. Annu Rev Pathol. 2017;12:245–75.

    CAS  Article  Google Scholar 

  15. 15.

    Teng Y, Wang X, Wang Y, Ma D. Wnt/beta-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem Biophys Res Commun. 2010;392:373–9.

    CAS  Article  Google Scholar 

  16. 16.

    Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4:e252.

    CAS  Article  Google Scholar 

  17. 17.

    Zeng Y, Cai J-H, Xie S-J, Li G-X, Song W-Q, Yan Q-H, et al. Therapeutic effects of signal transducer and activator of transcription 3 siRNA on human breast cancer in xenograft mice. Chin Med J. 2011;124:1854–61.

    Google Scholar 

  18. 18.

    Alshaer W, Hillaireau H, Vergnaud J, Ismail S, Fattal E. Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconjug Chem. 2014;26:1307–13.

    Article  Google Scholar 

  19. 19.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods. 2001;25:402–8.

    CAS  Article  Google Scholar 

  20. 20.

    Chen VY, Posada MM, Zhao L, Rosania GR. Rapid doxorubicin efflux from the nucleus of drug-resistant cancer cells following extracellular drug clearance. Pharm Res. 2007;24:2156–67.

    CAS  Article  Google Scholar 

  21. 21.

    Rajagopal A, Simon SM. Subcellular localization and activity of multidrug resistance proteins. Mol Biol Cell. 2003;14:3389–99.

    CAS  Article  Google Scholar 

  22. 22.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  Article  Google Scholar 

  23. 23.

    Ho EA, Piquette-Miller M. Regulation of multidrug resistance by pro-inflammatory cytokines. Curr Cancer Drug Targets. 2006;6:295–311.

    CAS  Article  Google Scholar 

  24. 24.

    Chen W, Qin Y, Liu S. Cytokines, breast cancer stem cells (BCSCs) and chemoresistance. Clin Transl Med. 2018;7:27.

    Article  Google Scholar 

  25. 25.

    Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P, et al. Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res. 2001;61:8851–8.

    CAS  PubMed  Google Scholar 

  26. 26.

    Wang K, Zhu X, Zhang K, Yin Y, Chen Y, Zhang T. Interleukin-6 contributes to chemoresistance in MDA-MB-231 cells via targeting HIF-1α. J Biochem Mol Toxicol. 2018;32:e22039.

    Article  Google Scholar 

  27. 27.

    Kumari N, Dwarakanath B, Das A, Bhatt AN. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol. 2016;37:11553–72.

    CAS  Article  Google Scholar 

  28. 28.

    Park SY, Han J, Kim JB, Yang MG, Kim YJ, Lim HJ, et al. Interleukin-8 is related to poor chemotherapeutic response and tumourigenicity in hepatocellular carcinoma. Eur J Cancer. 2014;50:341–50.

    CAS  Article  Google Scholar 

  29. 29.

    Du J, He Y, Li P, Wu W, Chen Y, Ruan H. IL-8 regulates the doxorubicin resistance of colorectal cancer cells via modulation of multidrug resistance 1 (MDR1). Cancer Chemother Pharmacol. 2018;81:1111–9.

    CAS  Article  Google Scholar 

  30. 30.

    Feng W, Xue T, Huang S, Shi Q, Tang C, Cui G, et al. HIF-1alpha promotes the migration and invasion of hepatocellular carcinoma cells via the IL-8-NF-kappaB axis. Cell Mol Biol Lett. 2018;23:26.

    Article  Google Scholar 

  31. 31.

    Chen W-T, Ebelt ND, Stracker TH, Xhemalce B, Van Den Berg CL, Miller KM. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion. Elife. 2015;4:e07270.

    Article  Google Scholar 

  32. 32.

    Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2014;2:78–91.

    CAS  Article  Google Scholar 

  33. 33.

    Jaggupilli A, Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. 2012;2012:708036.

    Article  Google Scholar 

  34. 34.

    Ahmed MA, Aleskandarany MA, Rakha EA, Moustafa RZ, Benhasouna A, Nolan C, et al. A CD44/CD24+ phenotype is a poor prognostic marker in early invasive breast cancer. Breast Cancer Res Treat. 2012;133:979–95.

    CAS  Article  Google Scholar 

  35. 35.

    Park S-Y, Choi J-H, Nam J-S. Targeting cancer stem cells in triple-negative breast cancer. Cancers. 2019;11:965.

    CAS  Article  Google Scholar 

  36. 36.

    Kim J-H, Lee SC, Ro J, Kang HS, Kim HS, Yoon S. Jnk signaling pathway-mediated regulation of Stat3 activation is linked to the development of doxorubicin resistance in cancer cell lines. Biochem Pharmacol. 2010;79:373–80.

    CAS  Article  Google Scholar 

  37. 37.

    Zang S, Chen F, Dai J, Guo D, Tse W, Qu X, et al. RNAi-mediated knockdown of Notch-1 leads to cell growth inhibition and enhanced chemosensitivity in human breast cancer. Oncol Rep. 2010;23:893–9.

    CAS  PubMed  Google Scholar 

  38. 38.

    Ge G, Zhou C, Ren Y, Tang X, Wang K, Zhang W, et al. Enhanced SLC34A2 in breast cancer stem cell-like cells induces chemotherapeutic resistance to doxorubicin via SLC34A2-Bmi1-ABCC5 signaling. Tumor Biol. 2016;37:5049–62.

    CAS  Article  Google Scholar 

Download references

Funding

This study was funded by research Grants from deanship of scientific research at the University of Jordan (no. 546) and King Abdullah II Fund for Development (no. 24/2018).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Walhan Alshaer or Abdalla Awidi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alkaraki, A., Alshaer, W., Wehaibi, S. et al. Enhancing chemosensitivity of wild-type and drug-resistant MDA-MB-231 triple-negative breast cancer cell line to doxorubicin by silencing of STAT 3, Notch-1, and β-catenin genes. Breast Cancer 27, 989–998 (2020). https://doi.org/10.1007/s12282-020-01098-9

Download citation

Keywords

  • STAT 3
  • Notch 1
  • β-Catenin
  • Triple negative breast cancer (TNBC)
  • Drug resistance