Skip to main content

Advertisement

Log in

Equol as a potent radiosensitizer in estrogen receptor-positive and -negative human breast cancer cell lines

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Breast cancer is the most common cause of cancer death among women worldwide, and diet plays an important role in its prevention and progression. Radiotherapy has a limited but important role in the management of nearly every stage of breast cancer. We studied whether equol, the major metabolite of the soybean isoflavone daidzein, could enhance radiosensitivity in two human breast cancer cell lines (T47D and MDA-MB-231).

Methods

MTT assay was used to examine equol’s effect on cell viability. Sensitivity of cells to equol, radiation and a combination of both was determined by colonogenic assays. Induction of apoptosis by equol, radiation and the combination of both was also determined by acridine orange/ethidium bromide double staining fluorescence microscopy. DNA strand breaks were assessed by Comet assay.

Result

MTT assay showed that equol (0.1–350 μM) inhibited MDA-MB-231 and T47D cell growth in a time- and dose-dependent manner. Treatment of cells with equol for 72 h (MDA-MB-231) and 24 h (T47D) was found to inhibit cell growth with IC50 values of 252 μM and 228 μM, respectively. Furthermore, pretreatment of cells with 50 μM equol for 72 h (MDA-MB-231) and 24 h (T47D) sensitized the cells to irradiation. Equol was also found to enhance radiation-induced apoptosis. Comet assay results showed that the radiosensitizing effect of equol was accompanied by increased radiation-induced DNA damages.

Conclusions

These results suggest for the first time that equol can be considered as a radiosensitizing agent and its effects may be due to increasing cell death following irradiation, increasing the remaining radiation-induced DNA damage and thus reducing the surviving fraction of irradiated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9(9):631–43.

    Article  CAS  PubMed  Google Scholar 

  2. Sarkar FH, Li Y. Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res. 2006;66(7):3347–50.

    Article  CAS  PubMed  Google Scholar 

  3. Vallerga AK, Zarling DA, Kinsella TJ. New radiosensitizing regimens, drugs, prodrugs, and candidates. Clin Adv Hematol Oncol. 2004;2(12):793–805.

    PubMed  Google Scholar 

  4. Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal. 2005;7(11–12):1630–47.

    Article  CAS  PubMed  Google Scholar 

  5. Romieu I. Diet and breast cancer. Salud Publica Mex. 2011;53(5):430–9.

    PubMed  Google Scholar 

  6. Michels KB, et al. Diet and breast cancer: a review of the prospective observational studies. Cancer. 2007;109(12 Suppl):2712–49.

    Article  CAS  PubMed  Google Scholar 

  7. Clavel-Chapelon F, Niravong M, Joseph RR. Diet and breast cancer: review of the epidemiologic literature. Cancer Detect Prev. 1997;21(5):426–40.

    CAS  PubMed  Google Scholar 

  8. Giovannucci E. Nutritional factors in human cancers. Adv Exp Med Biol. 1999;472:29–42.

    Article  CAS  PubMed  Google Scholar 

  9. Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin. 1999; 49(1): 33–64, 1.

    Google Scholar 

  10. Ziegler RG, et al. Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst. 1993;85(22):1819–27.

    Article  CAS  PubMed  Google Scholar 

  11. Dai Q, et al. Population-based case-control study of soyfood intake and breast cancer risk in Shanghai. Br J Cancer. 2001;85(3):372–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wu AH, et al. Soy intake and risk of breast cancer in Asians and Asian Americans. Am J Clin Nutr. 1998;68(6 Suppl):1437S–43S.

    CAS  PubMed  Google Scholar 

  13. Messina MJ, et al. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer. 1994;21(2):113–31.

    Article  CAS  PubMed  Google Scholar 

  14. Cassidy A. Physiological effects of phyto-oestrogens in relation to cancer and other human health risks. Proc Nutr Soc. 1996;55(1B):399–417.

    Article  CAS  PubMed  Google Scholar 

  15. Messina M, McCaskill-Stevens W, Lampe JW. Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst. 2006;98(18):1275–84.

    Article  PubMed  Google Scholar 

  16. Reinli K, Block G. Phytoestrogen content of foods—a compendium of literature values. Nutr Cancer. 1996;26(2):123–48.

    Article  CAS  PubMed  Google Scholar 

  17. Dixon RA. Phytoestrogens. Annu Rev Plant Biol. 2004;55:225–61.

    Article  CAS  PubMed  Google Scholar 

  18. Setchell KD. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr. 1998;68(6 Suppl):1333S–46S.

    CAS  PubMed  Google Scholar 

  19. Setchell KD, et al. Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr. 1984;40(3):569–78.

    CAS  PubMed  Google Scholar 

  20. Woclawek-Potocka I, et al. Phytoestrogen metabolites are much more active than phytoestrogens themselves in increasing prostaglandin F(2alpha) synthesis via prostaglanin F(2alpha) synthase-like 2 stimulation in bovine endometrium. Prostaglandins Other Lipid Mediat. 2005;78(1–4):202–17.

    Article  CAS  PubMed  Google Scholar 

  21. Atkinson C, Frankenfeld CL, Lampe JW. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med (Maywood). 2005;230(3):155–70.

    CAS  Google Scholar 

  22. Setchell KD, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J Nutr. 2002;132(12):3577–84.

    CAS  PubMed  Google Scholar 

  23. Setchell KD, Clerici C. Equol: history, chemistry, and formation. J Nutr. 2010;140(7):1355S–62S.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Axelson MS, Setchell KD. The excretion of lignans in rats—evidence for an intestinal bacterial source for this new group of compounds. FEBS Lett. 1981;123:337–42.

    Article  CAS  PubMed  Google Scholar 

  25. Kelly GE, Joannou GE, Reeder AY, Nelson C, Waring MA. The variable metabolic response to dietary isoflavones in humans. Proc Soc Exp Biol Med. 1995;208:40–3.

    Article  CAS  PubMed  Google Scholar 

  26. Karr SC, Lampe JW, Hutchins AM, Slavin JL. Urinary isoflavonoid excretion in humans is dose dependent at low to moderate levels of soy-protein consumption. Am J Clin Nutr. 1997;66:46–51.

    CAS  PubMed  Google Scholar 

  27. Lampe JW, Karr SC, Hutchins AM, Slavin JL. Urinary equol excretion with a soy challenge: influence of habitual diet. Proc Soc Exp Biol Med. 1998;217:335–9.

    Article  CAS  PubMed  Google Scholar 

  28. Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA. Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut flora. Nutr Cancer. 2000;36:27–32.

    Article  CAS  PubMed  Google Scholar 

  29. Shi J, et al. Equol induced apoptosis of human breast cancer MDA-MB-231 cell by inhibiting the expression of nuclear factor-kappaB. Wei Sheng Yan Jiu. 2011;40(1):95–8.

    CAS  PubMed  Google Scholar 

  30. Choi EJ, Ahn WS, Bae SM. Equol induces apoptosis through cytochrome c-mediated caspases cascade in human breast cancer MDA-MB-453 cells. Chem Biol Interact. 2009;177:7–11.

    Article  CAS  PubMed  Google Scholar 

  31. Lau TY, Leung LK. Soya isoflavones suppress phorbol 12-myristate 13-acetate-induced COX-2 expression in MCF-7 cells. Br J Nutr. 2006;96:169–76.

    Article  CAS  PubMed  Google Scholar 

  32. Magee PJ, McGlynn H, Rowland IR. Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro. Cancer Lett. 2004;208:35–41.

    Article  CAS  PubMed  Google Scholar 

  33. Kang NJ, Lee KW, Rogozin EA. Equol, a metabolite of the soybean isoflavone daidzein, inhibits neoplastic cell transformation by targeting the MEK/ERK/p90RSK/activator protein-1 pathway. J Biol Chem. 2007;282:32856–66.

    Article  CAS  PubMed  Google Scholar 

  34. Gluz O, et al. Triple-negative breast cancer–current status and future directions. Ann Oncol. 2009;20(12):1913–27.

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi Y, Lavigne JA, Hursting SD. Molecular signatures of soy-derived phytochemicals in androgen-responsive prostate cancer cells: a comparison study using DNA microarray. Mol Carcinog. 2006;45:943–56.

    Article  CAS  PubMed  Google Scholar 

  36. Yan L, Li D, Yee JA. Dietary supplementation with isolated soy protein reduces metastasis of mammary carcinoma cells in mice. Clin Exp Metastasis. 2002;19:535–40.

    Article  CAS  PubMed  Google Scholar 

  37. Hodgson JM, Croft KD, Puddey IB, Mori TA, Beilin LJ. Soybean isoflavonoids and their metabolic products inhibit in vitro lipoprotein oxidation in serum. J Nutr Biochem. 1991;7:664–9.

    Article  Google Scholar 

  38. Collins AR, Duthie GG. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch Biochem Biophys. 1998;360:142–8.

    Article  PubMed  Google Scholar 

  39. Arora A, Nair MG, Strasburg GM. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch Biochem Biophys. 1998;256:133–41.

    Article  Google Scholar 

  40. Reed, J.C., Apoptosis. Volume 322 of Methods in enzymology Methods in Enzymology S., v. 322, ed. J.C.R. John N. Abelson, Melvin I. Simon2000: Academic Press. 569.

  41. Collins AR, et al. The comet assay: what can it really tell us? Mutat Res. 1997;375(2):183–93.

    Article  CAS  PubMed  Google Scholar 

  42. Singh NP, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91.

    Article  CAS  PubMed  Google Scholar 

  43. Rakha EA, et al. Prognostic markers in triple-negative breast cancer. Cancer. 2007;109(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  44. Cheang MC, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 2008;14(5):1368–76.

    Article  CAS  PubMed  Google Scholar 

  45. Dent R, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34.

    Article  PubMed  Google Scholar 

  46. Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology. 2008;52(1):108–18.

    Article  CAS  PubMed  Google Scholar 

  47. Oakman C, Viale G, Di Leo A. Management of triple negative breast cancer. Breast. 2010;19(5):312–21.

    Article  PubMed  Google Scholar 

  48. Kyndi M, et al. Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer: the Danish Breast Cancer Cooperative Group. J Clin Oncol. 2008;26(9):1419–26.

    Article  CAS  PubMed  Google Scholar 

  49. Charalambous C, Pitta CA, Constantinou AI. Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells. BMC Cancer. 2013;13:238.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Thomas C, et al. ERbeta1 represses basal-like breast cancer epithelial to mesenchymal transition by destabilizing EGFR. Breast Cancer Res. 2012;14(6):R148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sarrio D, et al. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):989–97.

    Article  CAS  PubMed  Google Scholar 

  52. Vladusic EA, et al. Expression and regulation of estrogen receptor beta in human breast tumors and cell lines. Oncol Rep. 2000;7(1):157–67.

    CAS  PubMed  Google Scholar 

  53. Adams M, et al. Changes in tenascin-C isoform expression in invasive and preinvasive breast disease. Cancer Res. 2002;62(11):3289–97.

    CAS  PubMed  Google Scholar 

  54. Bardin A, et al. Loss of ERbeta expression as a common step in estrogen-dependent tumor progression. Endocr Relat Cancer. 2004;11(3):537–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Harris DM, et al. Phytoestrogens induce differential estrogen receptor alpha- or Beta-mediated responses in transfected breast cancer cells. Exp Biol Med (Maywood). 2005;230(8):558–68.

    CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Goliaei.

About this article

Cite this article

Taghizadeh, B., Ghavami, L., Nikoofar, A. et al. Equol as a potent radiosensitizer in estrogen receptor-positive and -negative human breast cancer cell lines. Breast Cancer 22, 382–390 (2015). https://doi.org/10.1007/s12282-013-0492-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-013-0492-0

Keywords

Navigation