Skip to main content
Log in

Pathogenesis of COVID-19-Associated Mucormycosis: An Updated Evidence-Based Review

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The current review gives a proper understanding of the various dynamics of COVID-associated mucormycosis (CAM). We provide insight into the agent and recent host-related factors that contributed to CAM. Also, we have discussed various environmental-related factors like fungal spore burden that could have contributed to the pathogenesis of CAM. This review also summarizes the main components of pathogenesis under three primary headings: the immunomodulatory effect of the virus, the involvement of underlying comorbidities conditions in the host, and the numerous treatment-related modalities used during COVID-19 treatment.

Recent Findings

The risk factors for CAM continue to evolve with the development of COVID infection. A sudden rise in CAM cases was observed in countries including India. Along with Rhizopus arrhizus, the rise of other species like Rhizopus homothallicus and Rhizopus microsporus was observed. The virus along with underlying conditions like hyperglycemia, uncontrolled diabetes mellitus, diabetic ketoacidosis, and dysregulated iron metabolism with hyperferritinemia predisposes to CAM. Also, non-judicious and high-dose use of corticosteroids along with interleukins inhibitors (IL-1 and IL-6), and tocilizumab, contributed to a high rise in the cases of CAM. No link was found between the upsurge in CAM cases with the cow dung cake burning in India. Also, the possibility of nosocomial transmission was also raised, which was rejected as the majority of the patients remained at home during COVID-19 infection. Interestingly, in one study, the genetic similarity was observed between the strains isolated from the patient and the environment. Thus, the interplay of various factors like high spore count, uncontrolled diabetes, and the use of inappropriate steroids/IL inhibitors during the management of COVID-19 could have contributed to the alarming rise in cases of CAM.

Summary

Mucorales are found ubiquitously in the environment. Understanding the pathogenesis and environmental factors like spore count and burden can provide insight into the development of CAM which is critical for optimal patient management. Also, COVID-19 management should include strict glycemic control and avoidance of any unnecessary medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Singh S, Kanaujia R, Rudramurthy SM. Pathogenesis of COVID-associated mucormycosis’, rhino-orbito-cerebral mucormycosis. In: Gupta, N., Honavar, S.G. (eds) Rhino-orbito-cerebral mucormycosis. Springer, Singapore. pp. 39–49. https://doi.org/10.1007/978-981-16-9729-6_4. This review provides an updated review of COVID-Associated Mucormycosis.

  2. Sharma NC. India reports 40,854 cases of black fungus so far. Mint. 2021:1–9. Available at: https://www.livemint.com/news/india-records-over-40k-cases-of-mucormycosis-11624875874985.html.

  3. Sinha A, Bhaskar SMM. In-hospital prevalence of mucormycosis among coronavirus disease 2019 (COVID-19) patients and COVID-19 in mucormycosis: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2022;12:313–7.

    Article  PubMed  Google Scholar 

  4. Patel A, Agarwal R, Rudramurthy SM, Shevkani M, Xess I, Sharma R, et al. Multicenter epidemiologic study of coronavirus disease-associated mucormycosis. India. Emerg Infect Dis. 2021;27:2349–59.

    Article  CAS  PubMed  Google Scholar 

  5. Guzmán-Castro S, Chora-Hernandez LD, Trujillo-Alonso G, Calvo-Villalobos I, Sanchez-Rangel A, Ferrer-Alpuin E, et al. COVID-19–associated mucormycosis, diabetes and steroid therapy: Experience in a single centre in Western Mexico. Mycoses. 2022;65:65–70.

    Article  PubMed  Google Scholar 

  6. Pal R, Singh B, Bhadada SK, Banerjee M, Bhogal RS, Hage N, et al. COVID-19-associated mucormycosis: An updated systematic review of literature. Mycoses. 2021;64(12):1452–9. https://doi.org/10.1111/myc.13338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fungal Diseases and COVID-19 | CDC. [cited 2023 Aug 14]. Available from: https://www.cdc.gov/fungal/covid-fungal.html.

  8. Chander J, Kaur M, Singla N, Punia RPS, Singhal SK, Attri AK, et al. Mucormycosis: Battle with the deadly enemy over a five-year period in India. J Fungi (Basel). 2018;4(2):46.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prakash H, Chakrabarti A. Global epidemiology of mucormycosis. J Fungi (Basel). 2019;5(1):26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hussain S, Riad A, Singh A, Klugarová J, Antony B, Banna H, et al. Global prevalence of COVID-19-associated mucormycosis (CAM): Living systematic review and meta-analysis. J Fungi (Basel). 2021;7(11):985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lai CC, Yu WL. Appropriate use of antimicrobial therapy for COVID-19 co-infection. Immunotherapy. 2021;13(13):1067–70.

    Article  CAS  PubMed  Google Scholar 

  12. Muthu V, Rudramurthy SM, Chakrabarti A, Agarwal R. Epidemiology and pathophysiology of COVID-19-associated mucormycosis: India versus the rest of the world. Mycopathologia. 2021;186:739–54. A comprehensive review on the COVID-Associated Mucormycosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seidel D, Simon M, Sprute R, Lubnow M, Evert K, Speer C, et al. Results from a national survey on COVID-19-associated mucormycosis in Germany: 13 patients from six tertiary hospitals. Mycoses. 2022;65:103–9.

    Article  CAS  PubMed  Google Scholar 

  14. Gangneux JP, Dannaoui E, Fekkar A, Luyt CE, Botterel F, De Prost N, et al. Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: the French multicentre MYCOVID study. Lancet Respir Med. 2022;10:180–90.

    Article  CAS  PubMed  Google Scholar 

  15. Hoenigl M, Seidel D, Carvalho A, Rudramurthy SM, Arastehfar A, Gangneux JP, et al. The emergence of COVID-19 associated mucormycosis: Analysis of cases from 18 countries. Lancet Microbe. 2022;3(7):e543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muthu V, Agarwal R, Rudramurthy SM, Thangaraju D, Shevkani MR, Patel AK, et al. Multicenter case–control study of COVID-19–associated mucormycosis outbreak, India. Emerg Infect Dis. 2023;29(1):8–19. The pioneer Indian study reporting the risk factors in an India.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Prakash H, Skiada A, Paul RA, Chakrabarti A, Rudramurthy SM. Connecting the dots: Interplay of pathogenic mechanisms between Covid-19 disease and mucormycosis. J Fungi (Basel). 2021;7(8):616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandley P, Subba P, Rohatgi S. COVID-19-associated mucormycosis: A matter of concern amid the SARS-CoV-2 pandemic. Vaccines (Basel). 2022;10(8):1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prakash H, Ghosh AK, Rudramurthy SM, Singh P, Xess I, Savio J, et al. A prospective multicenter study on mucormycosis in India: Epidemiology, diagnosis, and treatment. Med Mycol. 2019;57:395–402.

    Article  PubMed  Google Scholar 

  20. Kaur H, Kanaujia R, Rudramurthy SM. Rhizopus homothallicus: An emerging pathogen in era of COVID-19 associated mucormycosis. Indian J Med Microbiol. 2021;21:04137–2.

    Google Scholar 

  21. Rudramurthy SM, Singh S, Kanaujia R, Chaudhary H, Muthu V, Panda N, et al. Clinical and mycologic characteristics of emerging mucormycosis agent Rhizopus homothallicus - volume 29, number 7—July 2023 - Emerging Infectious Diseases Journal - CDC. Emerg Infect Dis. 2023;29:1313–22.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pandey M, Singh G, Agarwal R, Dabas Y, Jyotsna VP, Kumar R, et al. Emerging Rhizopus microsporus Infections in India. J Clin Microbiol. 2018;56(6):e00433–18.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ghosh AK, Singh R, Reddy S, Singh S, Rudramurthy SM, Kaur H, et al. Evaluation of environmental Mucorales contamination in and around the residence of COVID-19-associated mucormycosis patients. Front Cell Infect Microbiol. 2022;2(12):953750.

    Article  Google Scholar 

  24. Arora U, Priyadarshi M, Katiyar V, Soneja M, Garg P, Gupta I, et al. Risk factors for Coronavirus disease-associated mucormycosis. J Infect. 2022;84:383–90.

    Article  CAS  PubMed  Google Scholar 

  25. Richardson M. The ecology of the zygomycetes and its impact on environmental exposure. Clin Microbiol Infect. 2009;15:2–9.

    Article  PubMed  Google Scholar 

  26. Richardson MD, Rautemaa-Richardson R. Biotic environments supporting the persistence of clinically relevant mucormycetes. J Fungi (Basel). 2019;6(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Skaria J, John TM, Varkey S, Kontoyiannis DP. Are unique regional factors the missing link in India’s COVID- 19-associated mucormycosis crisis? mBio. 2022;13(2):e0047322.

    Article  PubMed  Google Scholar 

  28. Kathirvel S, Muthu V, Rudramurthy SM, Kaur H, Chakrabarti A, Agarwal R. Could cattle dung burning have contributed to the epidemic of COVID-19-associated mucormycosis in India? Results of an experimental aero-mycological study. Mycoses. 2022;65:1024–9. An important study describing the results of cattle dung burning in the role of COVID- 19-Associated Mucormycosis.

    Article  CAS  PubMed  Google Scholar 

  29. Muthu V, Agarwal R, Chakrabarti A. COVID-19, mucormycosis, and the cow: Damned lies! Indian J Med Microbiol. 2023;44 100382

  30. Rammaert B, Lanternier F, Zahar JR, Dannaoui E, Bougnoux ME, Lecuit M, et al. Healthcare-associated mucormycosis. Clin Infect Dis. 2012;54:S44–54.

    Article  PubMed  Google Scholar 

  31. He R, Hu C, Tang Y, Yang H, Cao L, Niu R. Report of 12 cases with tracheobronchial mucormycosis and a review. Clin Respir J. 2018;12:1651–60.

    Article  CAS  PubMed  Google Scholar 

  32. Chakrabarti A, Chatterjee SS, Das A, Panda N, Shivaprakash MR, Kaur A, et al. Invasive zygomycosis in India: Experience in a tertiary care hospital. Postgrad Med J. 2009;85:573–81.

    Article  CAS  PubMed  Google Scholar 

  33. Biswal M, Gupta P, Kanaujia R, Kaur K, Kaur H, Vyas A, et al. Evaluation of hospital environment for presence of Mucorales during COVID-19 associated mucormycosis outbreak in India – A multi-centre study. J Hosp Infect. 2022;122:173–9. A landmark study describing the presence of Mucorales in the environment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prakash H, Singh S, Rudramurthy SM, Singh P, Mehta N, Shaw D, et al. An aero mycological analysis of Mucormycetes in indoor and outdoor environments of northern India. Med Mycol. 2020;58:118–23.

    Article  PubMed  Google Scholar 

  35. Ghosh AK, Singh R, Reddy S, Singh S, Rudramurthy SM, Kaur H, et al. Evaluation of environmental Mucorales contamination in and around the residence of COVID-19-associated mucormycosis patients. Front Cell Infect Microbiol. 2022;12:1–9.

    Article  Google Scholar 

  36. Salazar F, Bignell E, Brown GD, Cook PC, Warris A. Pathogenesis of respiratory viral and fungal coinfections. Clin Microbiol Rev. 2022;35(1):e0009421.

    Article  PubMed  Google Scholar 

  37. Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of immune response during SARS-CoV-2 infection: lessons from the past. Front Immunol. 2020;11:553450.

    Article  Google Scholar 

  38. Petrikkos G, Skiada A, Lortholary O, Roilides E, Walsh TJ, Kontoyiannis DP. Epidemiology and clinical manifestations of mucormycosis. Clin Infect Dis. 2012;54:S23–34.

    Article  PubMed  Google Scholar 

  39. Smith SM, Boppana A, Traupman JA, Unson E, Maddock DA, Chao K, et al. Impaired glucose metabolism in patients with diabetes, prediabetes, and obesity is associated with severe COVID-19. J Med Virol. 2021;93:409–15.

    Article  CAS  PubMed  Google Scholar 

  40. Montefusco L, Ben Nasr M, D’Addio F, Loretelli C, Rossi A, Pastore I, et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nature Metabolism. 2021;3:774–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muthu V, Dhaliwal M, Sharma A, Nair D, Kumar HM, Rudramurthy SM, et al. Serum glucose-regulated protein 78 (GRP78) levels in COVID-19-associated mucormycosis: results of a case–control study. Mycopathologia. 2022;187:355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jose A, Singh S, Roychoudhury A, Kholakiya Y, Arya S, Roychoudhury S. Current understanding in the pathophysiology of SARS-CoV-2-associated rhino-orbito-cerebral mucormycosis: A comprehensive review. J Maxillofac Oral Surg. 2021;20:373–80.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Majeed A, Ashraf Shajar M, St Z, Maather A, Maazer A. Is hemoglobin the missing link in the pathogenesis of COVID-19? Anaesthesia, Pain & Intensive Care. 2020;24:9–12.

    Article  Google Scholar 

  44. Vlahakos VD, Marathias KP, Arkadopoulos N, Vlahakos DV. Hyperferritinemia in patients with COVID-19: An opportunity for iron chelation? Artif Organs. 2021;45:163–7.

    Article  CAS  PubMed  Google Scholar 

  45. Kumar HM, Sharma P, Rudramurthy SM, Sehgal IS, Prasad KT, Pannu AK, et al. Serum iron indices in COVID-19-associated mucormycosis: A case–control study. Mycoses. 2022;65:120.

    Article  Google Scholar 

  46. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704.

    Article  Google Scholar 

  47. Sen M, Honavar SG, Bansal R, Sengupta S, Rao R, Kim U, et al. Epidemiology, clinical profile, management, and outcome of COVID-19-associated rhino-orbital-cerebral mucormycosis in 2826 patients in India - Collaborative OPAI-IJO study on mucormycosis in COVID-19 (COSMIC), report 1. Indian J Ophthalmol. 2021;69:1670–92.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mulakavalupil B, Vaity C, Joshi S, Misra A, Pandit RA. Absence of case of mucormycosis (March 2020–May 2021) under strict protocol driven management care in a COVID-19 specific tertiary care intensive care unit. Diabetes Metab Syndr. 2021;15(4):102169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhogireddy R, Krishnamurthy V, Jabaris SSL, Pullaiah CP, Manohar S. Is Mucormycosis an inevitable complication of Covid-19 in India? Braz J Infect Dis. 2021;25:101597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zirpe K, Pote P, Deshmukh A, Gurav SK, Tiwari AM, Suryawanshi P. a retrospective analysis of risk factors of Covid-19 associated mucormycosis and mortality predictors: A single-center study. Cureus. 2021;13(10):e18718.

    PubMed  PubMed Central  Google Scholar 

  51. Özbek L, Topçu U, Manay M, Esen BH, Bektas SN, Aydın S, et al. COVID-19–associated mucormycosis: a systematic review and meta-analysis of 958 cases. Clin Microbiol Infect. 2023;29(6):722–31.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ravindra K, Ahlawat A. Five probable factors responsible for the COVID-associated mucormycosis outbreak in India. Int J Infect Dis. 2021;112:278–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.K. prepared the draft; P.S. prepared the figure and edited the draft; S.M.R. was responsible for the conceptualization and finalization of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shivaprakash M. Rudramurthy.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This is a review article and does not involve any human or animal studies; hence, consent and ethical clearance are not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanaujia, R., Sreenivasan, P. & Rudramurthy, S.M. Pathogenesis of COVID-19-Associated Mucormycosis: An Updated Evidence-Based Review. Curr Fungal Infect Rep 18, 69–75 (2024). https://doi.org/10.1007/s12281-024-00484-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-024-00484-6

Keywords

Navigation