Histopathology in the Diagnosis of Invasive Fungal Diseases

Abstract

Purpose of Review

The classical diagnostic principles for applying histopathology for the diagnosis of invasive fungal diseases are reviewed. Although several new molecular based techniques have recently been developed, the histopathological identification of fungal elements together with a typical tissue reaction remains the golden standard for stating a diagnosis of invasive mycosis. Therefore, and due to the risk of false negative and false positive results obtained from cultivation as well as the non-culture based diagnostic test for invasive fungal infections, an examination should always complement histopathology in the diagnosis of invasive fungal diseases.

Recent Findings

The application of molecular in situ identification techniques, i.e., immunohistochemistry and in situ hybridization, for morphologically observed fungal elements in tissue sections, has indeed improved the diagnostic accuracy of histopathology for the diagnosis of invasive fungal diseases.

Summary

Because the specific molecular techniques applied in the histopathological diagnosis of invasive mycoses are directed toward specific targets, the panel of specific immunoglobulins/probes to be used on tissue sections should be directed from the histomorphology of the fungal elements as detected by conventional histopathological methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.•

    Jensen HE, Chandler FW. Histopathological diagnoses of mycoses. In: Merz WG, Hay RJ, editors. Topley and Wilson, Medical Mycology. 10th ed. London: Hodder Arnold; 2005. A comprehensive review of the histopathological tools used for the diagnosis of mycoses is presented.

    Google Scholar 

  2. 2.

    Reiss E, Obayashi T, et al. Non-culture based diagnostic tests for mycotic infections. Med Mycol Suppl. 2000;1(38):147–59.

    Article  Google Scholar 

  3. 3.

    Ruangritchankul K, Chindamporn A, et al. Invasive fungal disease in university hospital: a PCR-based study of autopsy cases. Int J Clin Exp Pathol. 2015;8:14840–52.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Fukomoto H, Sato Y, et al. Development of a new real-time PCR system for simultaneous detection of bacteria and fungi in pathological samples. Int J Clin Exp Pathol. 2015;8:15479–88.

    Google Scholar 

  5. 5.

    Jensen HE. Systemic bovine aspergillosis, and zygomycosis in Denmark with reference to pathogenesis, pathology, and diagnosis. APMIS Suppl. 1994;42(102):1–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Vonk AG, Verdijk R, et al. Histopathological diagnosis using conventional staining techniques, with a key to identification. In: de Hoog GS, Guarro J, Gené J, Ahmed S, Al-Hatmi AMS, Figueras MJ, Vitale RG, editors. Atlas of Clinical Fungi. Utrecht: CBS; 2020.

    Google Scholar 

  7. 7.

    Jensen HE, Salonen J, et al. The use of immunohistochemistry to improve sensitivity and specificity in the diagnosis of systemic mycoses in patients with haematological malignancies. J Pathol. 1997;181:100–5.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Cronan J, Burrell M, et al. Aphthoid ulcerations in gastric candidiasis. Radiology. 1980;134:607–11.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Chandler FW, Kaplan W, Ajello L. Colour atlas and text of the histopathology of mycotic diseases. Chicago: Year Book Medical Publishers, Inc.; 1980.

    Google Scholar 

  10. 10.

    Jensen HE, Schønheyder H, et al. Diagnosis of systemic mycoses by specific immunohistochemical tests. APMIS. 1996;104:241–58.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Baker RD. The pathologic anatomy of mycoses, human infection with fungi, actinomycetes and algae. Berlin: Springer-Verlag; 1971.

    Book  Google Scholar 

  12. 12.

    Anthony PP. A guide to the histological identification of fungi in tissues. J Clin Pathol. 1973;26:828–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Schwarz J. The diagnosis of deep mycoses by morphologic methods. Hum Pathol. 1982;13:519–33.

    CAS  PubMed  Article  Google Scholar 

  14. 14.••

    Guarner J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev. 2011;24:247–80 Systematic and excellent review of laboratory approaches for the diagnosis of mycosis including pit-falls.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Hoog GS, de Guého E. A plea for the preservation of opportunistic fungal isolates. Diagn Microbiol Infect Dis. 1985;3:369–72.

    PubMed  Article  Google Scholar 

  16. 16.

    Chandler FW, Watts JC. Pathologic diagnosis of fungal infections. Chicago: ASCP Press; 1987.

    Google Scholar 

  17. 17.

    Elias JM. Principles and techniques in diagnostic histopathology. Park Ridge: Noyes Publications; 1983.

    Google Scholar 

  18. 18.

    Bancroft JD, Stevens A. Theory and practice of histopathological techniques. New York: Churchill Livingstone; 1996.

    Google Scholar 

  19. 19.

    Matsumoto T, Ajello L, et al. Developments in hyalohyphomycosis and phaeohyphomycosis. J Med Vet Mycol. 1994;32 Suppl 1:329–49.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Kwon-Chung KJ, Hill WB. New, special stain for histopathological diagnosis of cryptococcosis. J Clin Microbiol. 1981;13:383–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Wheeler MH, Bell AA. Melanins and their importance in pathogenic fungi. Curr Top Med Mycol. 1987;2:338–7.

    Article  Google Scholar 

  22. 22.

    Dixon DM, Polak A. The medically important dematiaceous fungi and their identification. Mycoses. 1991;34:1–18.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Ro JY, Lee SS, et al. Advantage of Fontana–Masson stain in capsule-deficient cryptococcal infection. Arch Pathol Lab Med. 1987;111:53–7.

    CAS  PubMed  Google Scholar 

  24. 24.

    Wood C, Russel-Bell B. Characterization of pigmented fungi by melanin staining. Am J Dermatopathol. 1983;5:77–81.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Monheit JE, Cowan DF, et al. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch Pathol Lab Med. 1984;108:616–8.

    CAS  PubMed  Google Scholar 

  26. 26.

    Monheit JE, Brown G, et al. Calcofluor white detection of fungi in cytopathology. Am J Clin Pathol. 1986;85:222–5.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Bhavasar RSK, Goje SK, et al. Detection of Candida by calcofluor white. Acta Cytol. 2010;54:679–84.

    PubMed  Article  Google Scholar 

  28. 28.

    Sanketh DS, Patil S, et al. Estimating the frequency of Candida in oral squamous cell carcinoma using calcofluor white fluorescent stain. J Invest Clin Dentist. 2016;7:304–7.

    CAS  Article  Google Scholar 

  29. 29.

    Salfelder K. Atlas of fungal pathology. Lancaster: Kluwer Academic Publishers; 1990.

    Google Scholar 

  30. 30.

    Rickerts V, Khot PD, et al. Comparison of quantitative real time PCR with sequencing and ribosomal RNA-FISH for the identification of fungi in formalin fixed, paraffin-embedded tissue specimens. BMC Infect Dis. 2011;11:1–12.

    Article  Google Scholar 

  31. 31.

    Rickerts V, Smith IM, et al. Deciphering the aetiology of a mixed fungal infection by broad-range PCR with sequencing and fluorescence in situ hybridisation. Mycoses. 2013;56:681–6.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    El Nageeb S, Hay RJ. Immunoperoxidase staining in the recognition of Aspergillus infections. Histopathol. 1981;5:437–44.

    Article  Google Scholar 

  33. 33.

    Kaufman L. Immunohistochemical diagnosis of systemic mycoses: an update. Eur J Epidemiol. 1992;8:377–82.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Krockenberger MB, Canfield PJ, et al. An immunohistochemical method that differentiates Cryptococcus neoformans varieties and serotypes in formalin-fixed paraffin-embedded tissues. Med Mycol. 2001;39:523–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Marcilla A, Monteagudo C, et al. Monoclonal antibody 3H8: a useful tool in the diagnosis of candidiasis. Microbiol. 1999;145:695–701.

    CAS  Article  Google Scholar 

  36. 36.

    Williams DW, Jones HS, et al. Immunocytochemical detection of Candida albicans in formalin fixed, paraffin embedded material. J Clin Pathol. 1998;51:857–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Fukuzawa M, Inaba H, et al. Improved detection of medically important fungi by immunoperoxidase staining with polyclonal antibodies. Virchows Arch. 1995;427:407–14.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Monteagudo C, Marcilla A, et al. Specific immunohistochemical identification of Candida albicans in paraffin-embedded tissue with a new monoclonal antibody (1B12). Am J Clin Pathol. 1995;103:130–5.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Kaufman L, Standard PG, et al. Immunohistologic identification of Aspergillus spp. and other hyaline fungi by using polyclonal fluorescent antibodies. J Clin Microbiol. 1997;35:2206–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Saito T, Imaizumi M, et al. Disseminated Fusarium infection identified by the immune-histochemical staining in a patient with a refractory leukemia. Tohoku J Exp Med. 1999;187:71–7.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Green JH, Hurrell WK, et al. Preparation of reference antisera for laboratory diagnosis of blastomycosis. J Clin Microbiol. 1979;10:1–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Kaplan W, Clifford MK. Production of fluorescent antibody reagents specific for the tissue form of Coccidioides immitis. Am Rev Respir Dis. 1964;89:651–8.

    CAS  PubMed  Google Scholar 

  43. 43.

    Silva ME, Kaplan W. Specific fluorescein-labeled antiglobulins for the yeast form of Paracoccidioides brasiliensis. Am J Trop Med Hyg. 1965;14:290–4.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Ku NK, Pullarkat ST, et al. Use of CD42b immunohistochemical stain for the detection of Histoplasma. Ann Diagn Pathol. 2018;32:47–50.

    PubMed  Article  Google Scholar 

  45. 45.

    Estrada JA, Stynen D, et al. Immunohistochemical identification of Penicillium marneffei by monoclonal antibody. Int J Dermatol. 1992;31:410–2.

    Article  Google Scholar 

  46. 46.

    Kobayashi M, Moriki T, et al. Immunohistochemical detection of Pneumocystis carinii in transbronchial lung biopsy specimens: antigen difference between human and rat Pneumocystis carinii. Jpn J Clin Oncol. 1992;22:387–92.

    CAS  PubMed  Google Scholar 

  47. 47.

    Jackson JA, Kaplan W, et al. Development of fluorescent-antibody reagents for demonstration of Pseudallescheria boydii in tissues. J Clin Microbiol. 1983;18:668–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Marques MEA, Coelho KIR, et al. Comparison between histochemical and immunohistochemical methods for diagnosis of sporotrichosis. J Clin Pathol. 1992;45:1089–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Kobayashi M, Kotani S, et al. Immunohistochemical identification of Trichosporon beigelii in histologic section by immunoperoxidase method. Am J Clin Pathol. 1988;89:100–5.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003;116:2833–8.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Moter A, Gobel UB. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods. 2000;41:85–112.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Wagner M, Haider S. New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr Opin Biotechnol. 2012;23:96–102.

    CAS  PubMed  Article  Google Scholar 

  53. 53.•

    Montone KT, Livolsi VA, et al. Rapid in-situ hybridization for dematiaceous fungi using a broad-spectrum oligonucleotide DNA probe. Diagn Mol Pathol. 2011;20:180–3 In the paper, the application of broad-spectrum DNA-probes is highlighted for the use in in situ hybridization.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Shinozaki M, Okubo Y, et al. Identification of Fusarium species in formalin-fixed and paraffin-embedded sections by in situ hybridization using peptide nucleic acid probes. J Clin Microbiol. 2011;49:808–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Teertstra WR, Lugones LG, et al. In situ hybridization in filamentous fungi using peptide nucleic acid probes. Fungal Genet Biol. 2004;41:1099–103.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Montone KT. Differentiation of Fusarium from Aspergillus species by colorimetric in situ hybridization in formalin-fixed, paraffin-embedded tissue sections using dual fluorogenic-labeled LNA probes. Am J Clin Pathol. 2009;132:866–70.

    CAS  PubMed  Article  Google Scholar 

  57. 57.•

    Montone KT. In situ hybridization for fungal ribosomal RNA sequences in paraffin-embedded tissue using biotin-labeled nucleic acid probes. Methods Mol Biol. 2014;1211:229–35 In the paper, the application of in-situ hybridization for fungal RNA in fixed tissues is presented.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Heyden RT, Qian X, et al. In situ hybridization for the identification of yeastlike organisms in tissue section. Diagn Mol Pathol. 2001;10:15–23.

    Article  Google Scholar 

  59. 59.

    Hayden RT, Isotalo PA, et al. In situ hybridization for the differentiation of Aspergillus, Fusarium, and Pseudallescheria species in tissue section. Diagn Mol Pathol. 2003;12:21–6.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Okubo Y, Shinozaki M, et al. Applied gene histopathology: identification of Fusarium species in FFPE tissue sections by in situ hybridization. Methods Mol Biol. 2013;968:141–7.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Arantes TD, Theodoro RC, et al. Use of fluorescent oligonucleotide probes for differentiation between Paracoccidioides brasiliensis and Paracoccidioides butzii in yeast and mycelial phase. Mem Inst Oswaldo Cruz. 2017;112:140–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Ning C, Lai J, et al. Accuracy of rapid diagnosis of Talaromyces marneffei: a systematic review and meta-analysis. PLOSOne. 2018;13:e0195569.

    Article  CAS  Google Scholar 

  63. 63.

    Haidaris PJ, Wright TW, et al. In situ hybridization analysis of developmental stages of Pneumocystis carinii that are transcriptionally active for a major surface glycoprotein gene. Mol Microbiol. 1993;7:647–56.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Kimura M, Maenishi O, et al. Unique histological characteristics of Scedosporium that could aid in its identification. Pathol Int. 2010;60:131–6.

    PubMed  Article  Google Scholar 

  65. 65.•

    Sadamoto S, Shinozaki M, et al. Histopathological study on the prevalence of trichosporonosis in formalin-fixed and paraffin-embedded tissue autopsy sections by in situ hybridization with peptide nucleic acid probe. Med Mycol. 2020;58:460–8 A recent paper presenting the advantages of using in situ hybridization for demonstration of trichosporonosis in fixed tissues.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Henrik Elvang Jensen.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest relevant to this publication.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human and animal subjects performed by the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Advances in Diagnosis of Invasive Fungal Infections

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jensen, H.E. Histopathology in the Diagnosis of Invasive Fungal Diseases. Curr Fungal Infect Rep 15, 23–31 (2021). https://doi.org/10.1007/s12281-021-00412-y

Download citation

Keywords

  • Histopathology
  • Immunohistochemistry
  • In situ hybridization
  • Tissue
  • Mycoses
  • Fungi