Nucleic Acid Tools for Invasive Fungal Disease Diagnosis

Abstract

Purpose of Review

This review has incorporated the knowledge and experience of the leads of each of the laboratory working parties of the fungal PCR initiative in order to provide up-to-date information on the performance and developments of PCR methods for the detection of fungi that commonly cause invasive fungal disease (IFD).

Recent Findings

Molecular diagnosis of IFD enhances the current repertoire of mycological investigations. Providing superior sensitivity and turn-around-time over classical approaches, yet maintaining the benefits of classical tests (e.g. species level identification and identifying resistance). Standardization for Aspergillus PCR is almost complete; the recent release of commercial PCR assays for a wide range fungi (Aspergillus, Candida, Pneumocystis, Mucorales and Pan-fungal) and availability of external quality control schemes (e.g. Quality Control of Molecular Diagnostics for Aspergillus, Candida, Pneumocystis) means that fungal PCR testing is robust and ready for use, globally.

Summary

Further work is needed to ascertain the utility of PCR in routine practice and to determine whether combining it with other biomarkers is an optimal strategy. PCR for detecting Mucorales sp. and on tissue, together with direct antifungal resistance detection in body fluids, may increase its diagnostic value across the board. This and the ability to diagnose Pneumocystis pneumonia and invasive candidiasis would go a long way towards attaining the long-held ambition of medical mycology to provide a comprehensive range of tests that can be relied upon to diagnose, at least, the common IFD. In short, PCR has a clear future and is close to achieving its full potential in our laboratories.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Ruhnke M, Schwartz S. Recent developments in the management of invasive fungal infections in patients with oncohematological diseases. Ther Adv Hematol. 2016;7(6):345–59.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Heinz WJ, Vehreschild JJ, Buchheidt D. Diagnostic work up to assess early response indicators in invasive pulmonary aspergillosis in adult patients with haematologic malignancies. Mycoses. 2019;62(6):486–93.

    PubMed  Google Scholar 

  3. 3.

    Maschmeyer G, De Greef J, Mellinghoff SC, et al. Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European conference on infections in leukemia (ECIL). Leukemia. 2019;33(4):844–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Lamoth F, Calandra T. Early diagnosis of invasive mould infections and disease. J Antimicrob Chemother. 2017;72(suppl_1):i19–28.

    CAS  PubMed  Google Scholar 

  5. 5.

    Sanguinetti M, Posteraro B, Beigelman-Aubry C, et al. Diagnosis and treatment of invasive fungal infections: looking ahead. J Antimicrob Chemother. 2019;74(Supplement_2):ii27–37.

    CAS  PubMed  Google Scholar 

  6. 6.

    Richardson M, Lass-Florl C. Changing epidemiology of systemic fungal infections. Clin Microbiol Infect. 2008;14(Suppl 4):5–24.

    PubMed  Google Scholar 

  7. 7.

    Friedman DZP, Schwartz IS. Emerging fungal infections: new patients, new patterns, and new pathogens. J Fungi (Basel). 2019;5(3).

    PubMed Central  Google Scholar 

  8. 8.

    Lewis RE, Wurster S, Beyda ND, Albert ND, Kontoyiannis DP. Comparative in vitro pharmacodynamic analysis of isavuconazole, voriconazole, and posaconazole against clinical isolates of aspergillosis, mucormycosis, fusariosis, and phaeohyphomycosis. Diagn Microbiol Infect Dis. 2019;114861.

  9. 9.

    Falci DR, Stadnik CMB, Pasqualotto AC. A review of diagnostic methods for invasive fungal diseases: challenges and perspectives. Infect Dis Ther. 2017;6(2):213–23.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Czurda S, Lion T. Prerequisites for control of contamination in fungal diagnosis. Methods Mol Biol. 2017;1508:249–55.

    CAS  PubMed  Google Scholar 

  11. 11.

    Springer J, Lackner M, Nachbaur D, Girschikofsky M, Risslegger B, Mutschlechner W, et al. Prospective multicentre PCR-based Aspergillus DNA screening in high-risk patients with and without primary antifungal mould prophylaxis. Clin Microbiol Infect. 2016;22(1):80–6.

    CAS  PubMed  Google Scholar 

  12. 12.

    White PL, Bretagne S, Klingspor L, Melchers WJ, McCulloch E, Schulz B, et al. Aspergillus PCR: one step closer to standardization. J Clin Microbiol. 2010;48(4):1231–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    White PL, Perry MD, Loeffler J, Melchers W, Klingspor L, Bretagne S, et al. Critical stages of extracting DNA from Aspergillus fumigatus in whole-blood specimens. J Clin Microbiol. 2010;48(10):3753–5.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    White PL, Mengoli C, Bretagne S, Cuenca-Estrella M, Finnstrom N, Klingspor L, et al. Evaluation of Aspergillus PCR protocols for testing serum specimens. J Clin Microbiol. 2011;49(11):3842–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Morton CO, White PL, Barnes RA, Klingspor L, Cuenca-Estrella M, Lagrou K, et al. Determining the analytical specificity of PCR-based assays for the diagnosis of IA: what is Aspergillus? Med Mycol. 2017;55(4):402–13.

    CAS  PubMed  Google Scholar 

  16. 16.

    White PL, Barnes RA. Molecular diagnosis of fungal disease. In: Kibbler CC, Barton R, Gow NAR, Howell S, MacCallum DM, Manuel RJ, editors. Oxford textbook of medical mycology. Oxford: Oxford University Press; 2018. p. 313–26.

    Google Scholar 

  17. 17.

    Arvanitis M, Ziakas PD, Zacharioudakis IM, Zervou FN, Caliendo AM, Mylonakis E. PCR in diagnosis of invasive aspergillosis: a meta-analysis of diagnostic performance. J Clin Microbiol. 2014;52(10):3731–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Mengoli C, Cruciani M, Barnes RA, Loeffler J, Donnelly JP. Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis. Lancet Infect Dis. 2009;9(2):89–96.

    CAS  PubMed  Google Scholar 

  19. 19.

    • White PL, Wingard JR, Bretagne S, et al. Aspergillus polymerase chain reaction: systematic review of evidence for clinical use in comparison with antigen testing. Clin Infect Dis. 2015;61(8):1293–303 A systematic review and comparsion ofAspergillusPCR, GM-ELISA and (1–3)-β-D-glucan for the diagnosis of aspergillosis.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    •• Cruciani M, Mengoli C, Barnes R, et al. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst Rev. 2019;9:CD009551 Update of Cochrane review ofAspergillusPCR, incorporating a large study number and more recent publications.

    PubMed  Google Scholar 

  21. 21.

    Cruciani M, Mengoli C, Loeffler J, et al. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst Rev. 2015;9:CD009551.

    Google Scholar 

  22. 22.

    Avni T, Levy I, Sprecher H, Yahav D, Leibovici L, Paul M. Diagnostic accuracy of PCR alone compared to galactomannan in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis: a systematic review. J Clin Microbiol. 2012;50(11):3652–8.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Sun W, Wang K, Gao W, Su X, Qian Q, Lu X, et al. Evaluation of PCR on bronchoalveolar lavage fluid for diagnosis of invasive aspergillosis: a bivariate metaanalysis and systematic review. PLoS One. 2011;6(12):e28467.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Tuon FF. A systematic literature review on the diagnosis of invasive aspergillosis using polymerase chain reaction (PCR) from bronchoalveolar lavage clinical samples. Rev Iberoam Micol. 2007;24(2):89–94.

    PubMed  Google Scholar 

  25. 25.

    Imbert S, Brossas JY, Palous M, Joly I, Meyer I, Fekkar A. Performance of Aspergillus PCR in cerebrospinal fluid for the diagnosis of cerebral aspergillosis. Clin Microbiol Infect. 2017;23(11):889 e1–4.

    Google Scholar 

  26. 26.

    Verweij PE, Brinkman K, Kremer HP, Kullberg BJ, Meis JF. Aspergillus meningitis: diagnosis by non-culture-based microbiological methods and management. J Clin Microbiol. 1999;37(4):1186–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Reinwald M, Buchheidt D, Hummel M, Duerken M, Bertz H, Schwerdtfeger R, et al. Diagnostic performance of an Aspergillus-specific nested PCR assay in cerebrospinal fluid samples of immunocompromised patients for detection of central nervous system aspergillosis. PLoS One. 2013;8(2):e56706.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    • Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos Trans R Soc Lond B Biol Sci. 2016;371(1709) Excellent review of azole resistance in Aspergillus fumigatus.

  29. 29.

    Montesinos I, Argudin MA, Hites M, et al. Culture-based methods and molecular tools for azole-resistant Aspergillus fumigatus detection in a Belgian University hospital. J Clin Microbiol. 2017;55(8):2391–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Tsitsopoulou A, Posso R, Vale L, Bebb S, Johnson E, White PL. Determination of the prevalence of triazole resistance in environmental Aspergillus fumigatus strains isolated in South Wales. UK Front Microbiol. 2018;9:1395.

    PubMed  Google Scholar 

  31. 31.

    Verweij PE, Zhang J, Debets AJM, et al. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management. Lancet Infect Dis. 2016;16(11):e251–e60.

    CAS  PubMed  Google Scholar 

  32. 32.

    Postina P, Skladny J, Boch T, et al. Comparison of two molecular assays for detection and characterization of Aspergillus fumigatus Triazole resistance and Cyp51A mutations in clinical isolates and primary clinical samples of Immunocompromised patients. Front Microbiol. 2018;9:555.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Chong GM, Vonk AG, Meis JF, Dingemans GJ, Houbraken J, Hagen F, et al. Interspecies discrimination of a. fumigatus and siblings a. lentulus and A. felis of the Aspergillus section Fumigati using the AsperGenius((R)) assay. Diagn Microbiol Infect Dis. 2017;87(3):247–52.

    CAS  PubMed  Google Scholar 

  34. 34.

    • Chong GM, van der Beek MT, von dem Borne PA, et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: a multicentre validation of the AsperGenius assay(R) in 201 patients with haematological disease suspected for invasive aspergillosis. J Antimicrob Chemother. 2016;71(12):3528–35 Large scale multicentre evaluation of a commercial PCR for Aspergillosis with the ability to identify resistance to azole antifungal therapy.

    CAS  PubMed  Google Scholar 

  35. 35.

    White PL, Posso RB, Barnes RA. Analytical and clinical evaluation of the PathoNostics AsperGenius assay for detection of invasive Aspergillosis and resistance to azole antifungal drugs during testing of serum samples. J Clin Microbiol. 2015;53(7):2115–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    White PL, Posso RB, Barnes RA. Analytical and clinical evaluation of the PathoNostics AsperGenius assay for detection of invasive Aspergillosis and resistance to azole antifungal drugs directly from plasma samples. J Clin Microbiol. 2017;55(8):2356–66.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Loeffler J, Mengoli C, Springer J, Bretagne S, Cuenca-Estrella M, Klingspor L, et al. Analytical comparison of in vitro-spiked human serum and plasma for PCR-based detection of Aspergillus fumigatus DNA: a study by the European Aspergillus PCR initiative. J Clin Microbiol. 2015;53(9):2838–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Donnelly JP, Chen SC, Kauffman CA, et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz1008

  39. 39.

    Lyon GM, Abdul-Ali D, Loeffler J, White PL, Wickes B, Herrera ML, et al. Development and evaluation of a calibrator material for nucleic acid-based assays for diagnosing aspergillosis. J Clin Microbiol. 2013;51(7):2403–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    • Patterson TF, Donnelly JP. New concepts in diagnostics for invasive mycoses: non-culture-based methodologies. J Fungi (Basel). 2019;5(1) Up to date review of new approached to the diagnosis of IFD.

    CAS  PubMed Central  Google Scholar 

  41. 41.

    Clancy CJ, Nguyen MH. Non-culture diagnostics for invasive candidiasis: promise and unintended consequences. J Fungi (Basel). 2018;4(1).

    PubMed Central  Google Scholar 

  42. 42.

    Avni T, Leibovici L, Paul M. PCR diagnosis of invasive candidiasis: systematic review and meta-analysis. J Clin Microbiol. 2011;49(2):665–70.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Ullmann AJ, Cornely OA, Donnelly JP, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: developing European guidelines in clinical microbiology and infectious diseases. Clin Microbiol Infect. 2012;18(Suppl 7):1–8.

    CAS  PubMed  Google Scholar 

  44. 44.

    Nieto M, Robles JC, Causse M, et al. Polymerase chain reaction versus blood culture to detect Candida species in high-risk patients with suspected invasive Candidiasis: the MICAFEM study. Infect Dis Ther. 2019;8(3):429–44.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    •• Health Technology Assessment Programme. The A-stop study antifungal stewardship opportunities with rapid tests for fungal infection in critically ill patients. ISRCTN study number 43895480, 2018. Important multicentre evaluation ofCandidaPCR and (1–3)-β-D-Glucan for the diagnosis of candidosis in ICU patients.

  46. 46.

    Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60(6):892–9.

    CAS  PubMed  Google Scholar 

  47. 47.

    Neely LA, Audeh M, Phung NA, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med. 2013;5(182):182ra54.

    PubMed  Google Scholar 

  48. 48.

    Arendrup MC, Andersen JS, Holten MK, et al. Diagnostic performance of T2Candida among ICU patients with risk factors for invasive candidiasis. Open Forum Infect Dis. 2019;6(5):ofz136.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Munoz P, Vena A, Machado M, et al. T2Candida MR as a predictor of outcome in patients with suspected invasive candidiasis starting empirical antifungal treatment: a prospective pilot study. J Antimicrob Chemother. 2018;73(suppl_4):iv6–iv12.

    CAS  PubMed  Google Scholar 

  50. 50.

    Clancy CJ, Nguyen MH. Diagnosing Invasive Candidiasis. J Clin Microbiol. 2018;56(5).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Falces-Romero I, Cendejas-Bueno E, Laplaza-Gonzalez M, et al. T2Candida((R)) to guide antifungal and length of treatment of candidemia in a pediatric multivisceral transplant recipient. Med Mycol Case Rep. 2018;21:66–8.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Gill CM, Kenney RM, Hencken L, et al. T2 Candida versus beta-D-glucan to facilitate antifungal discontinuation in the intensive care unit. Diagn Microbiol Infect Dis. 2019.

  53. 53.

    • Clancy CJ, Pappas PG, Vazquez J, et al. Detecting infections rapidly and easily for Candidemia trial, Part 2 (DIRECT2): a prospective, multicenter study of the T2Candida panel. Clin Infect Dis. 2018;66(11):1678–86 Seconday validaton of the performance of the T2 Candida assay, involving a larger clinical validation over contrived samples.

    CAS  PubMed  Google Scholar 

  54. 54.

    Mylonakis E, Zacharioudakis IM, Clancy CJ, Nguyen MH, Pappas PG. Efficacy of T2 magnetic resonance assay in monitoring Candidemia after initiation of antifungal therapy: the serial therapeutic and antifungal monitoring protocol (STAMP) Trial. J Clin Microbiol. 2018;56(4).

  55. 55.

    Munoz P, Vena A, Machado M, et al. T2MR contributes to the very early diagnosis of complicated candidaemia. A prospective study. J Antimicrob Chemother. 2018;73(suppl_4):iv13–iv9.

    CAS  PubMed  Google Scholar 

  56. 56.

    Beyda ND, Amadio J, Rodriguez JR, et al. In vitro evaluation of BacT/Alert FA blood culture bottles and T2Candida assay for detection of Candida in the presence of antifungals. J Clin Microbiol. 2018:56(8).

  57. 57.

    White PL. Recent advances and novel approaches in laboratory-based diagnostic mycology. Med Mycol. 2019;57(Supplement_3):S259–S66.

    PubMed  Google Scholar 

  58. 58.

    Chamilos G, Lewis RE, Kontoyiannis DP. Delaying amphotericin B-based frontline therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin Infect Dis. 2008;47(4):503–9.

    PubMed  Google Scholar 

  59. 59.

    Dannaoui E. Molecular tools for identification of Zygomycetes and the diagnosis of zygomycosis. Clin Microbiol Infect. 2009;15(Suppl 5):66–70.

    CAS  PubMed  Google Scholar 

  60. 60.

    Buitrago MJ, Aguado JM, Ballen A, et al. Efficacy of DNA amplification in tissue biopsy samples to improve the detection of invasive fungal disease. Clin Microbiol Infect. 2013;19(6):E271–7.

    CAS  PubMed  Google Scholar 

  61. 61.

    Lau A, Chen S, Sorrell T, Carter D, Malik R, Martin P, et al. Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J Clin Microbiol. 2007;45(2):380–5.

    CAS  PubMed  Google Scholar 

  62. 62.

    Hrncirova K, Lengerova M, Kocmanova I, Racil Z, Volfova P, Palousova D, et al. Rapid detection and identification of Mucormycetes from culture and tissue samples by use of high-resolution melt analysis. J Clin Microbiol. 2010;48(9):3392–4.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Bernal-Martinez L, Buitrago MJ, Castelli MV, Rodriguez-Tudela JL, Cuenca-Estrella M. Development of a single tube multiplex real-time PCR to detect the most clinically relevant Mucormycetes species. Clin Microbiol Infect. 2013;19(1):E1–7.

    CAS  PubMed  Google Scholar 

  64. 64.

    Hata DJ, Buckwalter SP, Pritt BS, Roberts GD, Wengenack NL. Real-time PCR method for detection of Zygomycetes. J Clin Microbiol. 2008;46(7):2353–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Cornely OA, Arikan-Akdagli S, Dannaoui E, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of mucormycosis 2013. Clin Microbiol Infect. 2014;20(Suppl 3):5–26.

    CAS  PubMed  Google Scholar 

  66. 66.

    • Ullmann AJ, Aguado JM, Arikan-Akdagli S, et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect. 2018;24(Suppl 1):e1–e38 Recent extensive guidelines for the management of aspergillosis.

    PubMed  Google Scholar 

  67. 67.

    Scherer E, Iriart X, Bellanger AP, et al. Quantitative PCR (qPCR) Detection of Mucorales DNA in bronchoalveolar lavage fluid to diagnose pulmonary mucormycosis. J Clin Microbiol. 2018;56(8).

  68. 68.

    Caillot D, Valot S, Lafon I, et al. Is it time to include CT "reverse halo sign" and qPCR targeting Mucorales in serum to EORTC-MSG criteria for the diagnosis of pulmonary mucormycosis in leukemia patients? Open Forum Infect Dis. 2016;3(4):ofw190.

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Legrand M, Gits-Muselli M, Boutin L, Garcia-Hermoso D, Maurel V, Soussi S, et al. Detection of circulating Mucorales DNA in critically ill burn patients: preliminary report of a screening strategy for early diagnosis and treatment. Clin Infect Dis. 2016;63(10):1312–7.

    CAS  PubMed  Google Scholar 

  70. 70.

    • Millon L, Herbrecht R, Grenouillet F, et al. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF). Clin Microbiol Infect. 2016;22(9):810 e1–8 Important national study highlighting the availability of Mucorales DNA in blood.

    Google Scholar 

  71. 71.

    Millon L, Larosa F, Lepiller Q, Legrand F, Rocchi S, Daguindau E, et al. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients. Clin Infect Dis. 2013;56(10):e95–101.

    CAS  PubMed  Google Scholar 

  72. 72.

    Springer J, Lackner M, Ensinger C, et al. Clinical evaluation of a Mucorales-specific real-time PCR assay in tissue and serum samples. J Med Microbiol. 2016;65(12):1414–21.

    CAS  PubMed  Google Scholar 

  73. 73.

    Bellanger AP, Berceanu A, Rocchi S, Valot B, Fontan J, Chauchet A, et al. Development of a quantitative PCR detecting Cunninghamella bertholletiae to help in diagnosing this rare and aggressive mucormycosis. Bone Marrow Transplant. 2018;53(9):1180–3.

    CAS  PubMed  Google Scholar 

  74. 74.

    Springer J, Goldenberger D, Schmidt F, Weisser M, Wehrle-Wieland E, Einsele H, et al. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species. J Med Microbiol. 2016;65(3):227–34.

    CAS  PubMed  Google Scholar 

  75. 75.

    Shelburne SA, Ajami NJ, Chibucos MC, Beird HC, Tarrand J, Galloway-Peña J, et al. Implementation of a pan-genomic approach to investigate holobiont-infecting microbe interaction: a case report of a leukemic patient with invasive mucormycosis. PLoS One. 2015;10(11):e0139851.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Garcia-Hermoso D, Criscuolo A, Lee SC, et al. Outbreak of invasive wound mucormycosis in a burn unit due to multiple strains of Mucor circinelloides f. circinelloides resolved by whole-genome sequencing. MBio. 2018;9(2).

  77. 77.

    Cushion MT. Are members of the fungal genus pneumocystis (a) commensals; a opportunists; b pathogens; or (d) all of the above? PLoS Pathog. 2010;6(9):e1001009.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Gigliotti F, Wright TW. Pneumocystis: where does it live? PLoS Pathog. 2012;8(11):e1003025.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Alanio A, Bretagne S. Diagnosis of Pneumocystis jirovecii pneumonia: role of β-D-glucan detection and PCR. Curr Fungal Infect Rep. 2014;8:322–30.

    Google Scholar 

  80. 80.

    Fan LC, Lu HW, Cheng KB, Li HP, Xu JF. Evaluation of PCR in bronchoalveolar lavage fluid for diagnosis of Pneumocystis jirovecii pneumonia: a bivariate meta-analysis and systematic review. PLoS One. 2013;8(9):e73099.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Lu Y, Ling G, Qiang C, Ming Q, Wu C, Wang K, et al. PCR diagnosis of Pneumocystis pneumonia: a bivariate meta-analysis. J Clin Microbiol. 2011;49(12):4361–3.

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Bretagne S. Advances and prospects for molecular diagnostics of fungal infections. Curr Infect Dis Rep. 2010;12(6):430–6.

    PubMed  Google Scholar 

  83. 83.

    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.

    CAS  PubMed  Google Scholar 

  84. 84.

    Johnson G, Nolan T, Bustin SA. Real-time quantitative PCR, pathogen detection and MIQE. Methods Mol Biol. 2013;943:1–16.

    CAS  PubMed  Google Scholar 

  85. 85.

    Muhlethaler K, Bogli-Stuber K, Wasmer S, et al. Quantitative PCR to diagnose Pneumocystis pneumonia in immunocompromised non-HIV patients. Eur Respir J. 2012;39(4):971–8.

    CAS  PubMed  Google Scholar 

  86. 86.

    Rohner P, Jacomo V, Studer R, Schrenzel J, Graf JD. Detection of Pneumocystis jirovecii by two staining methods and two quantitative PCR assays. Infection. 2009;37(3):261–5.

    CAS  PubMed  Google Scholar 

  87. 87.

    Tamburrini E, Mencarini P, Visconti E, et al. Imbalance between Pneumocystis carinii cysts and trophozoites in bronchoalveolar lavage fluid from patients with pneumocystosis receiving prophylaxis. J Med Microbiol. 1996;45(2):146–8.

    CAS  PubMed  Google Scholar 

  88. 88.

    Alanio A, Desoubeaux G, Sarfati C, Hamane S, Bergeron A, Azoulay E, et al. Real-time PCR assay-based strategy for differentiation between active Pneumocystis jirovecii pneumonia and colonization in immunocompromised patients. Clin Microbiol Infect. 2011;17(10):1531–7.

    CAS  PubMed  Google Scholar 

  89. 89.

    Flori P, Bellete B, Durand F, Raberin H, Cazorla C, Hafid J, et al. Comparison between real-time PCR, conventional PCR and different staining techniques for diagnosing Pneumocystis jiroveci pneumonia from bronchoalveolar lavage specimens. J Med Microbiol. 2004;53(Pt 7):603–7.

    CAS  PubMed  Google Scholar 

  90. 90.

    Alanio A, Bretagne S. Pneumocystis jirovecii detection in asymptomatic patients: what does its natural history tell us? F1000Res. 2017;6:739.

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/invasive fungal infections cooperative group and the National Institute of Allergy and Infectious Diseases mycoses study group (EORTC/MSG) consensus group. Clin Infect Dis. 2008;46(12):1813–21.

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Nucci M, Perfect JR. When primary antifungal therapy fails. Clin Infect Dis. 2008;46(9):1426–33.

    PubMed  Google Scholar 

  93. 93.

    Rickerts V. Identification of fungal pathogens in formalin-fixed, paraffin-embedded tissue samples by molecular methods. Fungal Biol. 2016;120(2):279–87.

    CAS  PubMed  Google Scholar 

  94. 94.

    Rickerts V, Khot PD, Ko DL, Fredricks DN. Enhanced fungal DNA-extraction from formalin-fixed, paraffin-embedded tissue specimens by application of thermal energy. Med Mycol. 2012;50(6):667–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Salehi E, Hedayati MT, Zoll J, Rafati H, Ghasemi M, Doroudinia A, et al. Discrimination of Aspergillosis, Mucormycosis, Fusariosis, and Scedosporiosis in formalin-fixed paraffin-embedded tissue specimens by use of multiple real-time quantitative PCR assays. J Clin Microbiol. 2016;54(11):2798–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Springer J, McCormick Smith I, Hartmann S, Winkelmann R, Wilmes D, Cornely O, et al. Identification of Aspergillus and Mucorales in formalin-fixed, paraffin-embedded tissue samples: comparison of specific and broad-range fungal qPCR assays. Med Mycol. 2019;57(3):308–13.

    CAS  PubMed  Google Scholar 

  97. 97.

    Rickerts V, Khot PD, Myerson D, Ko DL, Lambrecht E, Fredricks DN. Comparison of quantitative real time PCR with sequencing and ribosomal RNA-FISH for the identification of fungi in formalin fixed, paraffin-embedded tissue specimens. BMC Infect Dis. 2011;11:202.

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Rooms I, Mugisha P, Gambichler T, Hadaschik E, Esser S, Rath PM, et al. Disseminated emergomycosis in a person with HIV infection. Uganda Emerg Infect Dis. 2019;25(9):1750–1.

    PubMed  Google Scholar 

  99. 99.

    Khot PD, Ko DL, Fredricks DN. Sequencing and analysis of fungal rRNA operons for development of broad-range fungal PCR assays. Appl Environ Microbiol. 2009;75(6):1559–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    de Groot T, Hagen F, Vreuls W, Verweij PE, Chowdhary A, Meis JF. Genotyping of Aspergillus fumigatus in formalin-fixed paraffin-embedded tissues and serum samples from patients with invasive Aspergillosis. Front Cell Infect Microbiol. 2018;8:377.

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    van der Linden JW, Snelders E, Arends JP, Daenen SM, Melchers WJ, Verweij PE. Rapid diagnosis of azole-resistant aspergillosis by direct PCR using tissue specimens. J Clin Microbiol. 2010;48(4):1478–80.

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Frickmann H, Kunne C, Hagen RM, et al. Next-generation sequencing for hypothesis-free genomic detection of invasive tropical infections in poly-microbially contaminated, formalin-fixed, paraffin-embedded tissue samples - a proof-of-principle assessment. BMC Microbiol. 2019;19(1):75.

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Gelabert P, Sandoval-Velasco M, Olalde I, Fregel R, Rieux A, Escosa R, et al. Mitochondrial DNA from the eradicated European plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain. Proc Natl Acad Sci U S A. 2016;113(41):11495–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Rickerts V, McCormick Smith I, Mousset S, Kommedal O, Fredricks DN. Deciphering the aetiology of a mixed fungal infection by broad-range PCR with sequencing and fluorescence in situ hybridisation. Mycoses. 2013;56(6):681–6.

    CAS  PubMed  Google Scholar 

  105. 105.

    Bernal-Martinez L, Buitrago MJ, Castelli MV, Rodriguez-Tudela JL, Cuenca-Estrella M. Detection of invasive infection caused by Fusarium solani and non-Fusarium solani species using a duplex quantitative PCR-based assay in a murine model of fusariosis. Med Mycol. 2012;50(3):270–5.

    CAS  PubMed  Google Scholar 

  106. 106.

    Castelli MV, Buitrago MJ, Bernal-Martinez L, Gomez-Lopez A, Rodriguez-Tudela JL, Cuenca-Estrella M. Development and validation of a quantitative PCR assay for diagnosis of scedosporiosis. J Clin Microbiol. 2008;46(10):3412–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Gonzalez GM, Marquez J, Trevino-Rangel Rde J, et al. Murine model of disseminated fusariosis: evaluation of the fungal burden by traditional CFU and quantitative PCR. Mycopathologia. 2013;176(3–4):219–24.

    PubMed  Google Scholar 

  108. 108.

    Muraosa Y, Schreiber AZ, Trabasso P, Matsuzawa T, Taguchi H, Moretti ML, et al. Development of cycling probe-based real-time PCR system to detect Fusarium species and Fusarium solani species complex (FSSC). Int J Med Microbiol. 2014;304(3–4):505–11.

    CAS  PubMed  Google Scholar 

  109. 109.

    Nagano Y, Elborn JS, Millar BC, Goldsmith CE, Rendall J, Moore JE. Development of a novel PCR assay for the identification of the black yeast, Exophiala (Wangiella) dermatitidis from adult patients with cystic fibrosis (CF). J Cyst Fibros. 2008;7(6):576–80.

    CAS  PubMed  Google Scholar 

  110. 110.

    Steinmann J, Giraud S, Schmidt D, Sedlacek L, Hamprecht A, Houbraken J, et al. Validation of a novel real-time PCR for detecting Rasamsonia argillacea species complex in respiratory secretions from cystic fibrosis patients. New Microbes New Infect. 2014;2(3):72–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Zhang X, Xu G, Tang H, Li Y, Liu C. Development of loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Alternaria alternata. J AOAC Int. 2017;100(1):99–103.

    CAS  PubMed  Google Scholar 

  112. 112.

    Zhou J, Liao Y, Li H, et al. Development of a loop-mediated isothermal amplification assay for rapid detection of Trichosporon asahii in experimental and clinical samples. Biomed Res Int. 2015;2015:732573.

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Zhao Y, Petraitiene R, Walsh TJ, Perlin DS. A real-time PCR assay for rapid detection and quantification of Exserohilum rostratum, a causative pathogen of fungal meningitis associated with injection of contaminated methylprednisolone. J Clin Microbiol. 2013;51(3):1034–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Verrier J, Monod M. Diagnosis of dermatophytosis using molecular biology. Mycopathologia. 2017;182(1–2):193–202.

    CAS  PubMed  Google Scholar 

  115. 115.

    Babady NE, Miranda E, Gilhuley KA. Evaluation of Luminex xTAG fungal analyte-specific reagents for rapid identification of clinically relevant fungi. J Clin Microbiol. 2011;49(11):3777–82.

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Buitrago MJ, Merino P, Puente S, et al. Utility of real-time PCR for the detection of Paracoccidioides brasiliensis DNA in the diagnosis of imported paracoccidioidomycosis. Med Mycol. 2009;47(8):879–82.

    CAS  PubMed  Google Scholar 

  117. 117.

    Hien HTA, Thanh TT, Thu NTM, et al. Development and evaluation of a real-time polymerase chain reaction assay for the rapid detection of Talaromyces marneffei MP1 gene in human plasma. Mycoses. 2016;59(12):773–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Mitchell M, Dizon D, Libke R, Peterson M, Slater D, Dhillon A. Development of a real-time PCR assay for identification of Coccidioides immitis by use of the BD max system. J Clin Microbiol. 2015;53(3):926–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Muraosa Y, Toyotome T, Yahiro M, Watanabe A, Shikanai-Yasuda MA, Kamei K. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR. Med Mycol. 2016;54(4):433–8.

    CAS  PubMed  Google Scholar 

  120. 120.

    Jordanides NE, Allan EK, McLintock LA, et al. A prospective study of real-time panfungal PCR for the early diagnosis of invasive fungal infection in haemato-oncology patients. Bone Marrow Transplant. 2005;35(4):389–95.

    CAS  PubMed  Google Scholar 

  121. 121.

    Bezdicek M, Lengerova M, Ricna D, et al. Rapid detection of fungal pathogens in bronchoalveolar lavage samples using panfungal PCR combined with high resolution melting analysis. Med Mycol. 2016;54(7):714–24.

    CAS  PubMed  Google Scholar 

  122. 122.

    Valero C, de la Cruz-Villar L, Zaragoza O, Buitrago MJ. New Panfungal real-time PCR assay for diagnosis of invasive fungal infections. J Clin Microbiol. 2016;54(12):2910–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Harrison E, Stalhberger T, Whelan R, Sugrue M, Wingard JR, Alexander BD, et al. Aspergillus DNA contamination in blood collection tubes. Diagn Microbiol Infect Dis. 2010;67(4):392–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Jaeger EE, Carroll NM, Choudhury S, Dunlop AA, Towler HM, Matheson MM, et al. Rapid detection and identification of Candida, Aspergillus, and Fusarium species in ocular samples using nested PCR. J Clin Microbiol. 2000;38(8):2902–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Loeffler J, Hebart H, Bialek R, Hagmeyer L, Schmidt D, Serey FP, et al. Contaminations occurring in fungal PCR assays. J Clin Microbiol. 1999;37(4):1200–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Perry MD, White PL, Barnes RA. Comparison of four automated nucleic acid extraction platforms for the recovery of DNA from Aspergillus fumigatus. J Med Microbiol. 2014;63(Pt 9):1160–6.

    CAS  PubMed  Google Scholar 

  127. 127.

    Rimek D, Garg AP, Haas WH, Kappe R. Identification of contaminating fungal DNA sequences in Zymolyase. J Clin Microbiol. 1999;37(3):830–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Summah H, Zhu YG, Falagas ME, Vouloumanou EK, Qu JM. Use of real-time polymerase chain reaction for the diagnosis of Pneumocystis pneumonia in immunocompromised patients: a meta-analysis. Chin Med J. 2013;126(10):1965–73.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Lewis White.

Ethics declarations

Conflict of Interest

P. Lewis White reports personal fees from F2G, Gilead, MSD and BOPA, received funding for travel and meeting attendance from Gilead, Launch Diagnostics, BOPA and Bruker Diagnostics and received research funding from Bruker Diagnostics. Dr. White received payment from F2G for providing diagnostic services outside the submitted work. Alexandre Alanio reports non-financial support from Astellas and personal fees from Gilead science outside the submitted work. In addition, Dr. Alanio has a patent on a means for diagnosing, predicting or monitoring Pneumocystis pneumonia issued. Laurence Millon reports support for travel to meetings from Gilead, personal fees from Gilead, support for travel to meetings from Pfizer, personal fees from Pfizer, and support for travel to meetings from MSD outside the submitted work. Rosemary Barnes being treasurer and Steering Committee member of the Fungal PCR Initiative. Joseph Peter Donnelly reports personal fees from F2G, Gilead and Pfizer outside the submitted work. Mario Cruciani, Rebecca Gorton, Volker Rickerts and Juergen Loeffler declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Advances in Diagnosis of Invasive Fungal Infections

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

White, P.L., Alanio, A., Cruciani, M. et al. Nucleic Acid Tools for Invasive Fungal Disease Diagnosis. Curr Fungal Infect Rep 14, 76–88 (2020). https://doi.org/10.1007/s12281-020-00374-7

Download citation

Keywords

  • Aspergillus
  • Candida
  • Pneumocystis
  • Mucorales
  • Pan-fungal
  • Tissue
  • PCR