Current Fungal Infection Reports

, Volume 12, Issue 2, pp 59–65 | Cite as

The Black Yeasts: an Update on Species Identification and Diagnosis

  • Connie F. Cañete-Gibas
  • Nathan P. Wiederhold
Advances in Diagnosis of Invasive Fungal Infections (S Chen, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Advances in Diagnosis of Invasive Fungal Infections


Purpose of review

Black yeast-like fungi are capable of causing a wide range of infections, including invasive disease. The diagnosis of infections caused by these species can be problematic. We review the changes in the nomenclature and taxonomy of these fungi, and methods used for detection and species identification that aid in diagnosis.

Recent findings

Molecular assays, including DNA barcode analysis and rolling circle amplification, have improved our ability to correctly identify these species. A proteomic approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has also shown promising results. While progress has been made with molecular techniques using direct specimens, data are currently limited.


Molecular and proteomic assays have improved the identification of black yeast-like fungi. However, improved molecular and proteomic databases and better assays for the detection and identification in direct specimens are needed to improve the diagnosis of disease caused by black yeast-like fungi.


Black yeasts Diagnosis Species identification Cladophialophora Exophiala Fonsecaea Phialophora Rhinocladiella 


Compliance with Ethical Standards

Conflict of Interest

Connie F. Cañete-Gibas declares no conflict of interest.

Nathan P. Wiederhold has received grants from bioMerieux, Astellas, Pfizer, Merck, Viamet, F2G, MOE Medical Devices, and Cidara and has received travel reimbursement from Gilead.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Nachman S, Alpan O, Malowitz R, Spitzer ED. Catheter-associated fungemia due to Wangiella (Exophiala) dermatitidis. J Clin Microbiol. 1996;34(4):1011–3.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Al-Obaid I, Ahmad S, Khan ZU, Dinesh B, Hejab HM. Catheter-associated fungemia due to Exophiala oligosperma in a leukemic child and review of fungemia cases caused by Exophiala species. Eur J Clin Microbiol Infect Dis. 2006;25(11):729–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Nucci M, Akiti T, Barreiros G, Silveira F, Revankar SG, Wickes BL, et al. Nosocomial outbreak of Exophiala jeanselmei fungemia associated with contamination of hospital water. Clin Infect Dis. 2002;34(11):1475–80.CrossRefPubMedGoogle Scholar
  4. 4.
    • Seyedmousavi S, Netea MG, Mouton JW, Melchers WJ, Verweij PE, de Hoog GS. Black yeasts and their filamentous relatives: principles of pathogenesis and host defense. Clin Microbiol Rev. 2014;27(3):527–42. Comprehensive review of the black yeasts and their filamentous relatives. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ventin M, Ramirez C, Garau J. Exophiala dermatitidis de Hoog from a valvular aortal prothesis. Mycopathologia. 1987;99(1):45–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Patel AK, Patel KK, Darji P, Singh R, Shivaprakash MR, Chakrabarti A. Exophiala dermatitidis endocarditis on native aortic valve in a postrenal transplant patient and review of literature on E. dermatitidis infections. Mycoses. 2013;56(3):365–72.CrossRefPubMedGoogle Scholar
  7. 7.
    •• Revankar SG, Baddley JW, SCA C, Kauffman CA, Slavin M, Vazquez JA, et al. A Mycoses Study Group international prospective study of phaeohyphomycosis: an analysis of 99 proven/probable cases. Open Forum Infect Dis. 2017;4(4) International case registry of patients with proven or probable phaeohyphomycosis that included several cases of infections caused by black yeast-like fungi and their filamentous relatives, including localized superficial and deep infections, and disseminated disease.
  8. 8.
    Gschwend A, Degot T, Denis J, Sabou AM, Jeung MY, Zapata E, et al. Brain abscesses caused by Cladophialophora bantiana in a lung transplant patient: a case report and review of the literature. Transpl Infect Dis. 2017;19(6)Google Scholar
  9. 9.
    Chakrabarti A, Kaur H, Rudramurthy SM, Appannanavar SB, Patel A, Mukherjee KK, et al. Brain abscess due to Cladophialophora bantiana: a review of 124 cases. Med Mycol. 2016;54(2):111–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Garzoni C, Markham L, Bijlenga P, Garbino J. Cladophialophora bantiana: a rare cause of fungal brain abscess. Clinical aspects and new therapeutic options. Med Mycol. 2008;46(5):481–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Doymaz MZ, Seyithanoglu MF, Hakyemez I, Gultepe BS, Cevik S, Aslan T. A case of cerebral phaeohyphomycosis caused by Fonsecaea monophora, a neurotropic dematiaceous fungus, and a review of the literature. Mycoses. 2015;58(3):187–92.CrossRefPubMedGoogle Scholar
  12. 12.
    Koo S, Klompas M, Marty FM. Fonsecaea monophora cerebral phaeohyphomycosis: case report of successful surgical excision and voriconazole treatment and review. Med Mycol. 2010;48(5):769–74.CrossRefPubMedGoogle Scholar
  13. 13.
    de Hoog GS, Vicente VA, Najafzadeh MJ, Harrak MJ, Badali H, Seyedmousavi S. Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia. 2011;27:46–72.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vicente VA, Orelis-Ribeiro R, Najafzadeh MJ, Sun J, Guerra RS, Miesch S, et al. Black yeast-like fungi associated with lethargic crab disease (LCD) in the mangrove-land crab, Ucides cordatus (Ocypodidae). Vet Microbiol. 2012;158(1–2):109–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005;49(9):3640–5.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Garey KW, Rege M, Pai MP, Mingo DE, Suda KJ, Turpin RS, et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis. 2006;43(1):25–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Patterson TF, Thompson GR 3rd, Denning DW, Fishman JA, Hadley S, Herbrecht R, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63(4):e1-e60.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rogers SO, McKemy JM, Wang CJK. Molecular assessment of Exophiala and related hyphomycetes. Stud Mycol. 1999;43:122–32.Google Scholar
  19. 19.
    •• Teixeira MM, Moreno LF, Stielow BJ, Muszewska A, Hainaut M, Gonzaga L, et al. Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota). Stud Mycol. 2017;86:1–28. Large, comprehensive study of the genomics of the black yeasts. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gueidan C, Aptroot A, Caceres MED, Badali H, Stenroos S. A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol Prog. 2014;13(4):1027–39.CrossRefGoogle Scholar
  21. 21.
    Badali H, Bonifaz A, Barron-Tapia T, Vazquez-Gonzalez D, Estrada-Aguilar L, Oliveira NM, et al. Rhinocladiella aquaspersa, proven agent of verrucous skin infection and a novel type of chromoblastomycosis. Med Mycol. 2010;48(5):696–703.CrossRefPubMedGoogle Scholar
  22. 22.
    de Hoog GS, Chaturvedi V, Denning DW, Dyer PS, Frisvad JC, Geiser D, et al. Name changes in medically important fungi and their implications for clinical practice. J Clin Microbiol. 2015;53(4):1056–62.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Honbo S, Padhye AA, Ajello L. The relationship of Cladosporium carrionii to Cladophialophora ajelloi. Sabouraudia. 1984;22(3):209–18.CrossRefPubMedGoogle Scholar
  24. 24.
    De Hoog GS, Attili-Angelis D, Vicente VA, Van Den Ende AH, Queiroz-Telles F. Molecular ecology and pathogenic potential of Fonsecaea species. Med Mycol. 2004;42(5):405–16.CrossRefPubMedGoogle Scholar
  25. 25.
    Badali H, Gueidan C, Najafzadeh MJ, Bonifaz A, van den Ende AH, de Hoog GS. Biodiversity of the genus Cladophialophora. Stud Mycol. 2008;61:175–91.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gao L, Ma Y, Zhao W, Wei Z, Gleason ML, Chen H, et al. Three new species of Cyphellophora (Chaetothyriales) associated with sooty blotch and flyspeck. PLoS One. 2015;10(9):e0136857.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    McGinnis MR. Wangiella dermatitidis, a correction. Stud Mycol. 1977;15:367–9.Google Scholar
  28. 28.
    Kidd S, Halliday C, Alexiou H, Ellis D. Descriptions of medical fungi. CutCut Digital; 2016.
  29. 29.
    de Hoog GS, Mayser P, Haase G, Horre R, Horrevorts AM. A new species, Phialophora europaea, causing superficial infections in humans. Mycoses. 2000;43(11–12):409–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Arzanlou M, Groenewald JZ, Gams W, Braun U, Shin HD, Crous PW. Phylogenetic and morphotaxonomic revision of Ramichloridium and allied genera. Stud Mycol. 2007;58:57–93.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, et al. The Amsterdam declaration on fungal nomenclature. IMA Fungus. 2011;2(1):105–12.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, et al. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). In: Regnum Vegetabile, vol. 154. Konigstein: Koeltz Sci Books; 2012.Google Scholar
  33. 33.
    de Hoog GS, Gueho E, Masclaux F, Gerrits van den Ende AH, Kwon-Chung KJ, McGinnis MR. Nutritional physiology and taxonomy of human-pathogenic Cladosporium-Xylohypha species. J Med Vet Mycol. 1995;33(5):339–47.CrossRefPubMedGoogle Scholar
  34. 34.
    McGinnis MR. Wangiella, a new genus to accommodate Hormiscium dermatitidis. Mycotaxon. 1977;5:122–33.Google Scholar
  35. 35.
    Carrion AL. Preliminary report on a new clinical type of disease caused by Hormodendrum compactum, nov. sp. Puerto Rico J Publ Health Trop Med. 1935;10:543–5.Google Scholar
  36. 36.
    Attili DS, De Hoog GS, rDNA-RFLP P-KAA. ITS1 sequencing of species of the genus Fonsecaea, agents of chromoblastomycosis. Med Mycol. 1998;36(4):219–25.PubMedGoogle Scholar
  37. 37.
    Najafzadeh MJ, Sun J, Vicente V, Xi L, van den Ende AH, de Hoog GS. Fonsecaea nubica sp. nov, a new agent of human chromoblastomycosis revealed using molecular data. Med Mycol. 2010;48(6):800–6.CrossRefPubMedGoogle Scholar
  38. 38.
    de Hoog GS. Rhinocladiella and allied genera. Stud Mycol. 1977;15:1–140.Google Scholar
  39. 39.
    Heinrichs G, de Hoog GS, Haase G. Barcode identifiers as a practical tool for reliable species assignment of medically important black yeast species. J Clin Microbiol. 2012;50(9):3023–30.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    de Hoog GS, Takeo K, Yoshida S, Gottlich E, Nishimura K, Miyaji M. Pleoanamorphic life cycle of Exophiala (Wangiella) dermatitidis. Antonie Van Leeuwenhoek. 1994;65(2):143–53.CrossRefPubMedGoogle Scholar
  41. 41.
    White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press, Inc.; 1990. p. 315–22.Google Scholar
  42. 42.
    Raja HA, Miller AN, Pearce CJ, Oberlies NH. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod. 2017;80(3):756–70.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lau A, Chen S, Sorrell T, Carter D, Malik R, Martin P, et al. Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J Clin Microbiol. 2007;45(2):380–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Zupancic J, Novak Babic M, Zalar P, Gunde-Cimerman N. The black yeast Exophiala dermatitidis and other selected opportunistic human fungal pathogens spread from dishwashers to kitchens. PLoS One. 2016;11(2):e0148166.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gerritis van den Ende AH, de Hoog GS. Variability and molecular diagnostics of the neurotropic species Cladophialophora bantiana. Stud Mycol. 1999;43:151–62.Google Scholar
  46. 46.
    Najafzadeh MJ, Dolatabadi S, Saradeghi Keisari M, Naseri A, Feng P, de Hoog GS. Detection and identification of opportunistic Exophiala species using the rolling circle amplification of ribosomal internal transcribed spacers. J Microbiol Methods. 2013;94(3):338–42.CrossRefPubMedGoogle Scholar
  47. 47.
    Sun J, Najafzadeh MJ, Zhang J, Vicente VA, Xi L, de Hoog GS. Molecular identification of Penicillium marneffei using rolling circle amplification. Mycoses. 2011;54(6):e751–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Nagano Y, Elborn JS, Millar BC, Goldsmith CE, Rendall J, Moore JE. Development of a novel PCR assay for the identification of the black yeast, Exophiala (Wangiella) dermatitidis from adult patients with cystic fibrosis (CF). J Cyst Fibros. 2008;7(6):576–80.CrossRefPubMedGoogle Scholar
  49. 49.
    Libert X, Chasseur C, Packeu A, Bureau F, Roosens NH, De Keersmaecker SJ. A molecular approach for the rapid, selective and sensitive detection of Exophiala jeanselmei in environmental samples: development and performance assessment of a real-time PCR assay. Appl Microbiol Biotechnol. 2016;100(3):1377–92.CrossRefPubMedGoogle Scholar
  50. 50.
    Saenz AJ, Petersen CE, Valentine NB, Gantt SL, Jarman KH, Kingsley MT, et al. Reproducibility of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for replicate bacterial culture analysis. Rapid Commun Mass Spectrom. 1999;13(15):1580–5.CrossRefPubMedGoogle Scholar
  51. 51.
    Walker J, Fox AJ, Edwards-Jones V, Gordon DB. Intact cell mass spectrometry (ICMS) used to type methicillin-resistant Staphylococcus aureus: media effects and inter-laboratory reproducibility. J Microbiol Methods. 2002;48(2–3):117–26.CrossRefPubMedGoogle Scholar
  52. 52.
    Bernardo K, Pakulat N, Macht M, Krut O, Seifert H, Fleer S, et al. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics. 2002;2(6):747–53.CrossRefPubMedGoogle Scholar
  53. 53.
    Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49(4):543–51.CrossRefPubMedGoogle Scholar
  54. 54.
    • Rychert J, Slechta ES, Barker AP, Miranda E, Babady NE, Tang YW, et al. Multicenter evaluation of the Vitek MS v3.0 System for the identification of filamentous fungi. J Clin Microbiol. 2018;56(2) Multi-center study evaluating the clinical utility, including accuracy and reproducibility, of a MALDI-TOF MS diagnostic assay for the identification of medically important molds.
  55. 55.
    Nomura F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): a revolutionary shift in clinical diagnostic microbiology. Biochim Biophys Acta. 2015;1854(6):528–37.CrossRefPubMedGoogle Scholar
  56. 56.
    Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36(2):380–407.CrossRefPubMedGoogle Scholar
  57. 57.
    Ryzhov V, Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem. 2001;73(4):746–50.CrossRefPubMedGoogle Scholar
  58. 58.
    Parisi D, Magliulo M, Nanni P, Casale M, Forina M, Roda A. Analysis and classification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and a chemometric approach. Anal Bioanal Chem. 2008;391(6):2127–34.CrossRefPubMedGoogle Scholar
  59. 59.
    Valentine N, Wunschel S, Wunschel D, Petersen C, Wahl K. Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol. 2005;71(1):58–64.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Fraser M, Borman AM, Johnson EM. Rapid and robust identification of the agents of black-grain mycetoma by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2017;55(8):2521–8.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kondori N, Erhard M, Welinder-Olsson C, Groenewald M, Verkley G, Moore ER. Analyses of black fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS): species-level identification of clinical isolates of Exophiala dermatitidis. FEMS Microbiol Lett. 2015;362(1):1–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Ozhak-Baysan B, Ogunc D, Dogen A, Ilkit M, de Hoog GS. MALDI-TOF MS-based identification of black yeasts of the genus Exophiala. Med Mycol. 2015;53(4):347–52.CrossRefPubMedGoogle Scholar
  63. 63.
    Borman AM, Fraser M, Szekely A, Larcombe DE, Johnson EM. Rapid identification of clinically relevant members of the genus Exophiala by matrix-assisted laser desorption ionization-time of flight mass spectrometry and description of two novel species, Exophiala campbellii and Exophiala lavatrina. J Clin Microbiol. 2017;55(4):1162–76.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Odabasi Z, Paetznick VL, Rodriguez JR, Chen E, McGinnis MR, Ostrosky-Zeichner L. Differences in beta-glucan levels in culture supernatants of a variety of fungi. Med Mycol. 2006;44(3):267–72.CrossRefPubMedGoogle Scholar
  65. 65.
    Odabasi Z, Mattiuzzi G, Estey E, Kantarjian H, Saeki F, Ridge RJ, et al. Beta-D-glucan as a diagnostic adjunct for invasive fungal infections: validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. Clin Infect Dis. 2004;39(2):199–205.CrossRefPubMedGoogle Scholar
  66. 66.
    •• Halliday CL, Kidd SE, Sorrell TC, Chen SC. Molecular diagnostic methods for invasive fungal disease: the horizon draws nearer? Pathology. 2015;47(3):257–69. Comprehensive review of molecular diagnostic assays for the detection and identificaiton of fungi, including cultures and direct specimens. CrossRefPubMedGoogle Scholar
  67. 67.
    Gomez CA, Budvytiene I, Zemek AJ, Banaei N. Performance of targeted fungal sequencing for culture-independent diagnosis of invasive fungal disease. Clin Infect Dis. 2017;65(12):2035–41.CrossRefPubMedGoogle Scholar
  68. 68.
    Hall L, Le Febre KM, Deml SM, Wohlfiel SL, Wengenack NL. Evaluation of the Yeast Traffic Light PNA FISH probes for identification of Candida species from positive blood cultures. J Clin Microbiol. 2012;50(4):1446–8.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Stone NR, Gorton RL, Barker K, Ramnarain P, Kibbler CC. Evaluation of PNA-FISH Yeast Traffic Light for rapid identification of yeast directly from positive blood cultures and assessment of clinical impact. J Clin Microbiol. 2013;51(4):1301–2.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Altun O, Almuhayawi M, Ullberg M, Ozenci V. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J Clin Microbiol. 2013;51(12):4130–6.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez JA, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60(6):892–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Neely LA, Audeh M, Phung NA, Min M, Suchocki A, Plourde D, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med. 2013;5(182):182ra54.CrossRefPubMedGoogle Scholar
  73. 73.
    Massire C, Buelow DR, Zhang SX, Lovari R, Matthews HE, Toleno DM, et al. PCR followed by electrospray ionization mass spectrometry for broad-range identification of fungal pathogens. J Clin Microbiol. 2013;51(3):959–66.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Simner PJ, Uhl JR, Hall L, Weber MM, Walchak RC, Buckwalter S, et al. Broad-range direct detection and identification of fungi by use of the PLEX-ID PCR-electrospray ionization mass spectrometry (ESI-MS) system. J Clin Microbiol. 2013;51(6):1699–706.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Shin JH, Ranken R, Sefers SE, Lovari R, Quinn CD, Meng S, et al. Detection, identification, and distribution of fungi in bronchoalveolar lavage specimens by use of multilocus PCR coupled with electrospray ionization/mass spectrometry. J Clin Microbiol. 2013;51(1):136–41.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ozenci V, Patel R, Ullberg M, Stralin K. Demise of polymerase chain reaction/electrospray ionization-mass spectrometry as an infectious diseases diagnostic tool. Clin Infect Dis. 2018;66(3):452–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Connie F. Cañete-Gibas
    • 1
  • Nathan P. Wiederhold
    • 1
  1. 1.Fungus Testing Laboratory, Department of Pathology and Laboratory MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations