Antifungal Susceptibility Testing of Candida and Cryptococcus Species and Mechanisms of Resistance: Implications for Clinical Laboratories

Abstract

Purpose of Review

Resistance to antifungal drugs amongst Candida species is a growing concern, and azole resistance may be emerging in Cryptococcus species. This review provides a contemporary perspective, relevant to the clinical mycology laboratory, of antifungal susceptibility testing of these fungi, focussing on the challenges of phenotypic and genotypic methodologies to detect drug resistance.

Recent Findings

Standardised CLSI and EUCAST broth microdilution (BMD) susceptibility testing methods are the benchmark to determine clinical breakpoints (CBPs) and/or epidemiological cut-off values (ECVs) MICs for Candida and Cryptococcus spp. Commercial methods may be used but caution is required when employing BMD CBPs/ECVs to interpret results. Species-specific CBPs/ECVs for Candida spp. generally correlate well with predicting likelihood of therapeutic failure or of presence of a drug resistance mechanism with the exception of the echinocandins where the presence of specific FKS gene mutations and not the MIC correlates most accurately with clinical outcome. The relationship of presence of one or more mechanisms of azole resistance and drug MICs is uncertain. Next generation sequencing technology is offering insights into the relationships between susceptibility results obtained by phenotypic and genotypic methods. For Cryptococcus spp., CBPs are not established but species- and genetic type-specific EVCs are useful for guiding therapy where clinically indicated. Isolates of genotype VGII appear to exhibit the highest MICs.

Summary

Antifungal susceptibility testing of yeasts is important to detect drug resistance. For Candida spp., MICs have clinical utility for the azoles but detecting echinocandin resistance by genotypic methods is preferred. For Cryptococcus spp., ECVs are useful in guiding therapy.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13. doi:10.1126/scitranslmed.3004404.

    Article  PubMed  Google Scholar 

  2. 2.

    Perfect JR. Fungal diagnosis: how do we do it and can we do better? Curr Med Res Opin. 2013;29(Suppl 4):3–11. doi:10.1185/03007995.2012.761134.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Lackner M, Martin-Vicente A, Lass-Flörl C. Multidrug- and cross-resistant Candida: the looming threat. Curr Fun Infect Reports. 2015;9(1):23–36. doi:10.1007/s12281-014-0210-1.

    Article  Google Scholar 

  4. 4.

    Schmalreck AF, Lackner M, Becker K, Fegeler W, Czaika V, Ulmer H, et al. Phylogenetic relationships matter: antifungal susceptibility among clinically relevant yeasts. Antimicrob Agents Chemother. 2014;58(3):1575–85. doi:10.1128/aac.01799-13.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chapman B, Slavin M, Marriott D, Halliday C, Kidd S, Arthur I, et al. Changing epidemiology of candidaemia in Australia. J Antimicrob Chemother. 2017; doi:10.1093/jac/dkx047.

  6. 6.

    Pfaller MA, Jones RN, Castanheira M. Regional data analysis of Candida non-albicans strains collected in United States medical sites over a 6-year period, 2006–2011. Mycoses. 2014;57(10):602–11. doi:10.1111/myc.12206.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    • Arendrup MC, Cuenca-Estrella M, Lass-Florl C, Hope WW. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist Updat. 2013;16((6)):81–95. doi:10.1016/j.Ddrup.2014.01.001. Report from EUCAST providing rationale behind and development of reference clinical breakpoint interpretative values for antifungal drugs against Candida species and Aspergillus species

    Article  PubMed  Google Scholar 

  8. 8.

    Chakrabarti A, Sood P, Rudramurthy SM, Chen S, Kaur H, Capoor M. Incidence, characteristics and outcome of ICU-acquired candidemia in India. Intensive Care Med. 2015;41 doi:10.1007/s00134-014-3603-2.

  9. 9.

    Xisto MI, Caramalho RD, Rocha DA, Ferreira-Pereira A, Sartori B, Barreto-Bergter E, et al. Pan-azole-resistant Candida tropicalis carrying homozygous erg11 mutations at position K143R: a new emerging superbug? J Antimicrob Chemother. 2017; doi:10.1093/jac/dkw558.

  10. 10.

    Cogliati M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Scientifica. 2013;2013:23. doi:10.1155/2013/675213.

    Article  Google Scholar 

  11. 11.

    • Lockhart SR, Iqbal N, Bolden CB, DeBess EE, Marsden-Haug N, Worhle R, et al. Epidemiologic cutoff values for triazole drugs in Cryptococcus gattii: correlation of molecular type and in vitro susceptibility. Diagn Microbiol Infect Dis. 2012;73((2)):144–8. doi:10.1016/j.diagmicrobio.2012.02.018. Comprehensive and one of the first evaluations of the MIC values for the various genotypes of C. neoformans and C. gattii and the development of species specific and genotype specific ECVs

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Byrnes EJ III, Li W, Lewit Y, Ma H, Voelz K, Ren P, et al. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the Northwest United States. PLoS Pathog. 2010;6(4):e1000850. doi:10.1371/journal.ppat.1000850.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Chong HS, Dagg R, Malik R, Chen S, Carter D. In vitro susceptibility of the yeast pathogen Cryptococcus to fluconazole and other azoles varies with molecular genotype. J Clin Microbiol. 2010;48(11):4115–20. doi:10.1128/jcm.01271-10.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Iqbal N, DeBess EE, Wohrle R, Sun B, Nett RJ, Ahlquist AM, et al. Correlation of genotype and in vitro susceptibilities of Cryptococcus gattii strains from the Pacific Northwest of the United States. J Clin Microbiol. 2010;48(2):539–44. doi:10.1128/JCM.01505-09.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Hagen F, Illnait-Zaragozi MT, Bartlett KH, Swinne D, Geertsen E, Klaassen CH, et al. In vitro antifungal susceptibilities and amplified fragment length polymorphism genotyping of a worldwide collection of 350 clinical, veterinary, and environmental Cryptococcus gattii isolates. Antimicrob Agents Chemother. 2010;54(12):5139–45. doi:10.1128/aac.00746-10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2012;125(1 Suppl):S3–13. doi:10.1016/j.amjmed.2011.11.001.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard. CLSI Document M27-S3. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2008.

  18. 18.

    Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope W. EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST)*. Clin Microbiol Infect. 2012;18((7)):E246–E7. doi:10.1111/j.1469-0691.2012.03880.x.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing yeasts; M27-S4. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

    Google Scholar 

  20. 20.

    Clinical and Laboratory Standards Institute. Epidemiological cutoff values for antifungal susceptibility testing. M59. Wayne, PA, USA: Clinical and Laboratory Standards Insitute; 2016.

  21. 21.

    • Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Frontiers in Medicine. 2016;3((11)) doi:10.3389/fmed.2016.00011. Contemporary and detailed review of the molecular mechanisms of antifungal resistance in Candida and Aspergillus species.

  22. 22.

    Clinical and Laboratory Standards Institute. Principles and procedures for the development of epidemiological cutoff values for antifungal susceptbility testing. M57. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2016.

  23. 23.

    Espinel-Ingroff A, Cuenca-Estrella M, Cantón E. EUCAST and CLSI: working together towards a harmonized method for antifungal susceptibility testing. Current Fungal Infection Reports. 2013;7(1):59–67. doi:10.1007/s12281-012-0125-7.

    Article  Google Scholar 

  24. 24.

    Cuenca-Estrella M. Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside. Clin Microbiol Infect. 2014;20(Suppl 6):54–9. doi:10.1111/1469-0691.12495.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Arendrup MC. Update on antifungal resistance in Aspergillus and Candida. Clin Microbiol Infect. 2014;20(Suppl 6):42–8. doi:10.1111/1469-0691.12513.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Guinea J, Recio S, Escribano P, Torres-Narbona M, Peláez T, Sánchez-Carrillo C, et al. Rapid antifungal susceptibility determination for yeast isolates by use of Etest performed directly on blood samples from patients with Fungemia. J Clin Microbiol. 2010;48(6):2205–12. doi:10.1128/jcm.02321-09.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Peterson JF, Pfaller MA, Diekema DJ, Rinaldi MG, Riebe KM, Ledeboer NA. Multicenter comparison of the VITEK 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing caspofungin, micafungin, and posaconazole against Candida spp. J Clin Microbiol. 2011; doi:10.1128/jcm.02517-10.

  28. 28.

    Cuenca-Estrella M, Gomez-Lopez A, Alastruey-Izquierdo A, Bernal-Martinez L, Cuesta I, Buitrago MJ, et al. Comparison of the Vitek 2 antifungal susceptibility system with the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution reference methods and with the Sensititre YeastOne and Etest Techniques for in vitro detection of antifungal resistance in yeast isolates. J Clin Microbiol. 2010;48((5)):1782–6. doi:10.1128/JCM.02316-09.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. Comparison of the Vitek 2 yeast susceptibility system with CLSI microdilution for antifungal susceptibility testing of fluconazole and voriconazole against Candida spp., using new clinical breakpoints and epidemiological cutoff values. Diagn Microbiol Infect Dis. 2013;77(1):37–40. doi:10.1016/j.diagmicrobio.2013.05.019.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Borghi E, Iatta R, Sciota R, Biassoni C, Cuna T, Montagna MT, et al. Comparative evaluation of the Vitek 2 yeast susceptibility test and CLSI broth microdilution reference method for testing antifungal susceptibility of invasive fungal isolates in Italy: the GISIA3 study. J Clin Microbiol. 2010;48(9):3153–7. doi:10.1128/jcm.00952-10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kathuria S, Singh PK, Sharma C, Prakash A, Masih A, Kumar A, et al. Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization–time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method. J Clin Microbiol. 2015;53(6):1823–30. doi:10.1128/jcm.00367-15.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Perlin DS. Antifungal drug resistance: do molecular methods provide a way forward? Curr Opin Infect Dis. 2009;22(6):568–73. doi:10.1097/QCO.0b013e3283321ce5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    • Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Frontiers in Microbiol. 2016;7:2173. doi:10.3389/fmicb.2016.02173. Comprehensive review of azole resistance and the mechanisms of resistance for Candida albicans and the main non- albicans Candida species

  34. 34.

    Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis. 2012;73(1):45–8. doi:10.1016/j.diagmicrobio.2012.02.001.

    Article  PubMed  Google Scholar 

  35. 35.

    Pfaller MA, Rhomberg PR, Messer SA, Jones RN, Castanheira M. Isavuconazole, micafungin, and 8 comparator antifungal agents' susceptibility profiles for common and uncommon opportunistic fungi collected in 2013: temporal analysis of antifungal drug resistance using CLSI species-specific clinical breakpoints and proposed epidemiological cutoff values. Diagn Microbiol Infect Dis. 2015;82(4):303–13. doi:10.1016/j.diagmicrobio.2015.04.008.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    • Astvad KMT, Hare RK, Arendrup MC. Evaluation of the in vitro activity of isavuconazole and comparator voriconazole against 2635 contemporary clinical Candida and Aspergillus isolates. Clin Microbiol Infect. doi:10.1016/j.cmi.2017.03.023. One of the first large multicentre studies comparing the in vitro activity of the recently licensed azole, isavuconazole, with that of voriconazole for Candida and Aspergillus isolates

  37. 37.

    • Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64((2)):134–40. doi:10.1093/cid/ciw691. Excellent description of the emergence, diagnosis and epidemiology of Candida auris including the use of whole genome sequencing to track infection

    Article  PubMed  Google Scholar 

  38. 38.

    Fothergill AW, Sutton DA, McCarthy DI, Wiederhold NP. Impact of new antifungal breakpoints on antifungal resistance in Candida species. J Clin Microbiol. 2014;52(3):994–7. doi:10.1128/jcm.03044-13.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    van Hal SJ, Chen SC, Sorrell TC, Ellis DH, Slavin M, Marriott DM. Support for the EUCAST and revised CLSI fluconazole clinical breakpoints by Sensititre® YeastOne® for Candida albicans: a prospective observational cohort study. J Antimicrob Chemother. 2014;69(8):2210–4. doi:10.1093/jac/dku124.

    Article  PubMed  Google Scholar 

  40. 40.

    Marichal P, Koymans L, Willemsens S, Bellens D, Verhasselt P, Luyten W, et al. Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology. 1999;145(10):2701–13. doi:10.1099/00221287-145-10-2701.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Xiang MJ, Liu JY, Ni PH, Wang S, Shi C, Wei B, et al. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res. 2013;13(4):386–93. doi:10.1111/1567-1364.12042.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Wang H, Kong F, Sorrell TC, Wang B, McNicholas P, Pantarat N, et al. Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing. BMC Microbiol. 2009;9(1):167. doi:10.1186/1471-2180-9-167.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Morschhauser J. The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta. 2002;1587(2–3):240–8.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Frade JP, Warnock DW, Arthington-Skaggs BA. Rapid quantification of drug resistance gene expression in Candida albicans by reverse transcriptase LightCycler PCR and fluorescent probe hybridization. J Clin Microbiol. 2004;42(5):2085–93. doi:10.1128/jcm.42.5.2085-2093.2004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Kofla G, Ruhnke M. Development of a new real-time TaqMan PCR assay for quantitative analyses of Candida albicans resistance genes expression. J Microbiol Methods. 2007;68(1):178–83. doi:10.1016/j.mimet.2006.07.011.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Garnaud C, Botterel F, Sertour N, Bougnoux ME, Dannaoui E, Larrat S, et al. Next-generation sequencing offers new insights into the resistance of Candida spp. to echinocandins and azoles. J Antimicrob Chemother. 2015;70(9):2556–65. doi:10.1093/jac/dkv139.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Fekkar A, Dannaoui E, Meyer I, Imbert S, Brossas JY, Uzunov M, et al. Emergence of echinocandin-resistant Candida spp. in a hospital setting: a consequence of 10 years of increasing use of antifungal therapy? Eur J Clin Microbiol Infect Dis. 2014;33(9):1489–96. doi:10.1007/s10096-014-2096-9.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Dudiuk C, Gamarra S, Leonardeli F, Jimenez-Ortigosa C, Vitale RG, Afeltra J, et al. Set of classical PCRs for detection of mutations in Candida glabrata FKS genes linked with echinocandin resistance. J Clin Microbiol. 2014;52(7):2609–14. doi:10.1128/jcm.01038-14.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Perlin DS. Echinocandin resistance in Candida. Clin Infect Dis. 2015;61(Suppl 6):S612–7. doi:10.1093/cid/civ791.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Alexander BD, Johnson MD, Pfeiffer CD, Jimenez-Ortigosa C, Catania J, Booker R, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis. 2013;56(12):1724–32. doi:10.1093/cid/cit136.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    • Shields RK, Nguyen MH, Press EG, Kwa AL, Cheng S, Du C, et al. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob Agents Chemother. 2012;56((9)):4862–9. doi:10.1128/AAC.00027-12. Landmark study documenting the importance and clinical relevance of FKS gene mutations in Candida glabrata where their presence was independently linked to clinical failure and echinocandin therapy

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Castanheira M, Woosley LN, Diekema DJ, Messer SA, Jones RN, Pfaller MA. Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains. Antimicrob Agents Chemother. 2010;54(6):2655–9. doi:10.1128/aac.01711-09.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to Echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. 2012;50(4):1199–203. doi:10.1128/jcm.06112-11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Pham CD, Iqbal N, Bolden CB, Kuykendall RJ, Harrison LH, Farley MM, et al. Role of FKS mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother. 2014;58(8):4690–6. doi:10.1128/aac.03255-14.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, et al. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat. 2011;14(3):164–76. doi:10.1016/j.drup.2011.01.004.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Desnos-Ollivier M, Bretagne S, Raoux D, Hoinard D, Dromer F, Dannaoui E, et al. Mutations in the fks1 gene in Candida albicans, C. tropicalis, and C. krusei correlate with elevated caspofungin MICs uncovered in AM3 medium using the method of the European Committee on Antibiotic Susceptibility Testing. Antimicrob Agents Chemother. 2008;52(9):3092–8. doi:10.1128/AAC.00088-08.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Biswas C, Chen SCA, Halliday C, Kennedy K, Playford EG, Marriott DJ, et al. Identification of genetic markers of resistance to echinocandins, azoles and 5-fluorocytosine in Candida glabrata by next generation sequencing: a feasibility study. Clin Microbiol Infect. 2017; doi:10.1016/j.cmi.2017.03.014.

  58. 58.

    Pham CD, Bolden CB, Kuykendall RJ, Lockhart SR. Development of a Luminex-based multiplex assay for detection of mutations conferring resistance to echinocandins in Candida glabrata. J Clin Microbiol. 2014;52(3):790–5. doi:10.1128/JCM.03378-13.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Kanafani ZA, Perfect JR. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis. 2008;46(1):120–8. doi:10.1086/524071.

    Article  PubMed  Google Scholar 

  60. 60.

    Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010;50(3):291–322. doi:10.1086/649858.

    Article  PubMed  Google Scholar 

  61. 61.

    Bicanic T, Harrison T, Niepieklo A, Dyakopu N, Meintjes G. Symptomatic relapse of HIV-associated cryptococcal meningitis after initial fluconazole monotherapy: the role of fluconazole resistance and immune reconstitution. Clin Infect Dis. 2006;43(8):1069–73. doi:10.1086/507895.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Wang H, Xiao M, Chen SC, Kong F, Sun ZY, Liao K, et al. In vitro susceptibilities of yeast species to fluconazole and voriconazole as determined by the 2010 National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) study. J Clin Microbiol. 2012;50(12):3952–9. doi:10.1128/JCM.01130-12.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Govender NP, Patel J, van Wyk M, Chiller TM, Lockhart SR. Group for Enteric R et al. trends in antifungal drug susceptibility of Cryptococcus neoformans isolates obtained through population-based surveillance in South Africa in 2002–2003 and 2007–2008. Antimicrob Agents Chemother. 2011;55(6):2606–11. doi:10.1128/AAC.00048-11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Figueiredo TP, Lucas RC, Cazzaniga RA, Franca CN, Segato F, Taglialegna R, et al. Antifungal susceptibility testing and genotyping characterization of Cryptococcus neoformans and isolates from HIV-infected patients of Ribeirao Preto, Sao Paulo. Brazil Rev Inst Med Trop Sao Paulo. 2016;58:69. doi:10.1590/S1678-9946201658069.

    PubMed  Google Scholar 

  65. 65.

    Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Bijie H, Dzierzanowska D, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: 10.5-year analysis of susceptibilities of noncandidal yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol. 2009;47(1):117–23. doi:10.1128/JCM.01747-08.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Chen YC, Chang TY, Liu JW, Chen FJ, Chien CC, Lee CH, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: a 12-year longitudinal study. BMC Infect Dis. 2015;15:277. doi:10.1186/s12879-015-1023-8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Smith KD, Achan B, Hullsiek KH, McDonald TR, Okagaki LH, Alhadab AA, et al. Increased antifungal drug resistance in clinical isolates of Cryptococcus neoformans in Uganda. Antimicrob Agents Chemother. 2015;59(12):7197–204. doi:10.1128/aac.01299-15.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Thompson GR 3rd, Wiederhold NP, Fothergill AW, Vallor AC, Wickes BL, Patterson TF. Antifungal susceptibilities among different serotypes of Cryptococcus gattii and Cryptococcus neoformans. Antimicrob Agents Chemother. 2009;53(1):309–11. doi:10.1128/AAC.01216-08.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Perfect JR, Cox GM. Drug resistance in Cryptococcus neoformans. Drug Resist Updat. 1999;2(4):259–69. doi:10.1054/drup.1999.0090.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Aller AI, Martin-Mazuelos E, Lozano F, Gomez-Mateos J, Steele-Moore L, Holloway WJ, et al. Correlation of fluconazole MICs with clinical outcome in cryptococcal infection. Antimicrob Agents Chemother. 2000;44(6):1544–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Dannaoui E, Abdul M, Arpin M, Michel-Nguyen A, Piens MA, Favel A, et al. Results obtained with various antifungal susceptibility testing methods do not predict early clinical outcome in patients with cryptococcosis. Antimicrob Agents Chemother. 2006;50(7):2464–70. doi:10.1128/AAC.01520-05.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Espinel-Ingroff A, Chowdhary A, Cuenca-Estrella M, Fothergill A, Fuller J, Hagen F, et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for amphotericin B and flucytosine. Antimicrob Agents Chemother. 2012;56(6):3107–13. doi:10.1128/AAC.06252-11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Espinel-Ingroff A, Aller AI, Canton E, Castanon-Olivares LR, Chowdhary A, Cordoba S, et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother. 2012;56(11):5898–906. doi:10.1128/AAC.01115-12.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Datta K, Rhee P, Byrnes E 3rd, Garcia-Effron G, Perlin DS, Staab JF, et al. Isavuconazole activity against Aspergillus lentulus, Neosartorya udagawae, and Cryptococcus gattii, emerging fungal pathogens with reduced azole susceptibility. J Clin Microbiol. 2013;51(9):3090–3. doi:10.1128/JCM.01190-13.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Thompson GR 3rd, Fothergill AW, Wiederhold NP, Vallor AC, Wickes BL, Patterson TF. Evaluation of Etest method for determining isavuconazole MICs against Cryptococcus gattii and Cryptococcus neoformans. Antimicrob Agents Chemother. 2008;52(8):2959–61. doi:10.1128/AAC.00646-08.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Whelan WL. The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans. Crit Rev Microbiol. 1987;15(1):45–56. doi:10.3109/10408418709104447.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Joseph-Horne T, Loeffler RS, Hollomon DW, Kelly SL. Amphotericin B resistant isolates of Cryptococcus neoformans without alteration in sterol biosynthesis. J Med Vet Mycol. 1996;34(3):223–5.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, Santangelo R, et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun. 2006;74(2):1352–9. doi:10.1128/IAI.74.2.1352-1359.2006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Sionov E, Lee H, Chang YC, Kwon-Chung KJ. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 2010;6(4):e1000848. doi:10.1371/journal.ppat.1000848.

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Sionov E, Chang YC, Garraffo HM, Dolan MA, Ghannoum MA, Kwon-Chung KJ. Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14alpha-demethylase (Erg11) residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole. Antimicrob Agents Chemother. 2012;56(3):1162–9. doi:10.1128/AAC.05502-11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Bosco-Borgeat ME, Mazza M, Taverna CG, Cordoba S, Murisengo OA, Vivot W, et al. Amino acid substitution in Cryptococcus neoformans lanosterol 14-alpha-demethylase involved in fluconazole resistance in clinical isolates. Rev Argent Microbiol. 2016;48(2):137–42. doi:10.1016/j.ram.2016.03.003.

    PubMed  Google Scholar 

  82. 82.

    Gast CE, Basso LR Jr, Bruzual I, Wong B. Azole resistance in Cryptococcus gattii from the Pacific Northwest: investigation of the role of ERG11. Antimicrob Agents Chemother. 2013;57(11):5478–85. doi:10.1128/AAC.02287-12.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sharon C.-A. Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Advances in Diagnosis of Invasive Fungal Infections

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halliday, C.L., Slavin, M.A. & Chen, S.CA. Antifungal Susceptibility Testing of Candida and Cryptococcus Species and Mechanisms of Resistance: Implications for Clinical Laboratories. Curr Fungal Infect Rep 11, 124–133 (2017). https://doi.org/10.1007/s12281-017-0282-9

Download citation

Keywords

  • Antifungal susceptibility
  • Drug resistance
  • Candida
  • Cryptococcus