Trans-acting regulators of ribonuclease activity

Abstract

RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.

This is a preview of subscription content, access via your institution.

References

  1. Abrell, J.W. 1971. Ribonuclease I released from Escherichia coli by osmotic shock. Arch. Biochem. Biophys. 142, 693–700.

    CAS  PubMed  Article  Google Scholar 

  2. Aiba, H. 2007. Mechanism of RNA silencing by Hfq-binding small RNAs. Curr. Opin. Microbiol. 10, 134–139.

    CAS  PubMed  Article  Google Scholar 

  3. Andrade, J.M., Cairrão, F., and Arraiano, C.M. 2006. RNase R affects gene expression in stationary phase: regulation of ompA. Mol. Microbiol. 60, 219–228.

    CAS  PubMed  Article  Google Scholar 

  4. Arraiano, C.M., Mauxion, F., Viegas, S.C., Matos, R.G., and Séraphin, B. 2013. Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. Biochim. Biophys. Acta Gene Regul. Mech. 1829, 491–513.

    CAS  Article  Google Scholar 

  5. Aseev, L.V. and Boni, I.V. 2011. Extraribosomal functions of bacterial ribosomal proteins. Mol. Biol. 45, 739–750.

    CAS  Article  Google Scholar 

  6. Baek, Y.M., Jang, K.J., Lee, H., Yoon, S., Baek, A., Lee, K., and Kim, D.E. 2019. The bacterial endoribonuclease RNase E can cleave RNA in the absence of the RNA chaperone Hfq. J. Biol. Chem. 294, 16465–16478.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Bandyra, K.J. and Luisi, B.F. 2018. RNase E and the high-fidelity orchestration of RNA metabolism. Microbiol. Spectr. 6, RWR–0008–2017.

    Google Scholar 

  8. Bartel, D.P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Basturea, G.N., Zundel, M.A., and Deutscher, M.P. 2011. Degradation of ribosomal RNA during starvation: comparison to quality control during steady-state growth and a role for RNase PH. RNA 17, 338–345.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Bechhofer, D.H. and Deutscher, M.P. 2019. Bacterial ribonucleases and their roles in RNA metabolism. Crit. Rev. Biochem. Mol. 54, 242–300.

    CAS  Article  Google Scholar 

  11. Beintema, J.J. and van der Laan, J.M. 1986. Comparison of the structure of turtle pancreatic ribonuclease with those of mammalian ribonucleases. FEBS Lett. 194, 338–342.

    CAS  PubMed  Article  Google Scholar 

  12. Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    CAS  PubMed  Article  Google Scholar 

  13. Blaszczyk, J., Gan, J., Tropea, J.E., Court, D.L., Waugh, D.S., and Ji, X. 2004. Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure 12, 457–466.

    CAS  PubMed  Article  Google Scholar 

  14. Blázquez, M., Fominaya, J.M., and Hofsteenge, J. 1996. Oxidation of sulfhydryl groups of ribonuclease inhibitor in epithelial cells is sufficient for its intracellular degradation. J. Biol. Chem. 271, 18638–18642.

    PubMed  Article  Google Scholar 

  15. Bruce, H.A., Du, D., Matak-Vinkovic, D., Bandyra, K.J., Broadhurst, R.W., Martin, E., Sobott, F., Shkumatov, A.V., and Luisi, B.F. 2018. Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes. Nucleic Acids Res. 46, 387–402.

    CAS  PubMed  Article  Google Scholar 

  16. Buckle, A.M., Schreiber, G., and Fersht, A.R. 1994. Protein-Protein recognition-crystal structural-analysis of a barnase barstar complex at 2.0-Å resolution. Biochemistry 33, 8878–8889.

    CAS  PubMed  Article  Google Scholar 

  17. Bycroft, M., Hubbard, T.J., Proctor, M., Freund, S.M., and Murzin, A.G. 1997. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88, 235–242.

    CAS  PubMed  Article  Google Scholar 

  18. Cahová, H., Winz, M.L., Höfer, K., Nübel, G., and Jäschke, A. 2015. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 519, 374–377.

    PubMed  Article  CAS  Google Scholar 

  19. Cairrão, F., Chora, A., Zilhão, R., Carpousis, A.J., and Arraiano, C.M. 2001. RNase II levels change according to the growth conditions: characterization of gmr, a new Escherichia coli gene involved in the modulation of RNase II. Mol. Microbiol. 39, 1550–1561.

    PubMed  Article  Google Scholar 

  20. Cairrão, F., Cruz, A., Mori, H., and Arraiano, C.M. 2003. Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol. Microbiol. 50, 1349–1360.

    PubMed  Article  CAS  Google Scholar 

  21. Callaghan, A.J., Marcaida, M.J., Stead, J.A., McDowall, K.J., Scott, W.G., and Luisi, B.F. 2005a. Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature 437, 1187–1191.

    CAS  PubMed  Article  Google Scholar 

  22. Callaghan, A.J., Redko, Y., Murphy, L.M., Grossmann, J.G., Yates, D., Garman, E., Ilag, L.L., Robinson, C.V., Symmons, M.F., McDowall, K.J., et al. 2005b. “Zn-link”: a metal-sharing interface that organizes the quaternary structure and catalytic site of the endoribonuclease, RNase E. Biochemistry 44, 4667–4675.

    CAS  PubMed  Article  Google Scholar 

  23. Cannistraro, V.J. and Kennell, D. 1989. Purification and characterization of ribonuclease M and mRNA degradation in Escherichia coli. Eur. J. Biochem. 181, 363–370.

    CAS  PubMed  Article  Google Scholar 

  24. Cannistraro, V.J. and Kennell, D. 1991. RNase I*, a form of RNase I, and mRNA degradation in Escherichia coli. J. Bacteriol. 173, 4653–4659.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Caruthers, J.M., Feng, Y., McKay, D.B., and Cohen, S.N. 2006. Retention of core catalytic functions by a conserved minimal ribonuclease E peptide that lacks the domain required for tetramer formation. J. Biol. Chem. 281, 27046–27051.

    CAS  PubMed  Article  Google Scholar 

  26. Carzaniga, T., Briani, F., Zangrossi, S., Merlino, G., Marchi, P., and Dehò, G. 2009. Autogenous regulation of Escherichia coli polynucleotide phosphorylase expression revisited. J. Bacteriol. 191, 1738–1748.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Celesnik, H., Deana, A., and Belasco, J.G. 2007. Initiation of RNA decay in Escherichia coli by 5’ pyrophosphate removal. Mol. Cell 27, 79–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Ceyssens, P.J., Minakhin, L., Van den Bossche, A., Yakunina, M., Klimuk, E., Blasdel, B., De Smet, J., Noben, J.P., Bläsi, U., Severinov, K., et al. 2014. Development of giant bacteriophage ϕKZ is independent of the host transcription apparatus. J. Virol. 88, 10501–10510.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. Chen, C. and Deutscher, M.P. 2005. Elevation of RNase R in response to multiple stress conditions. J. Biol. Chem. 280, 34393–34396.

    CAS  PubMed  Article  Google Scholar 

  30. Chen, C. and Deutscher, M.P. 2010. RNase R is a highly unstable protein regulated by growth phase and stress. RNA 16, 667–672.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Chen, W.X., Zhang, Z.Z., Chen, J., Zhang, J., Zhang, J., Wu, Y., Huang, Y., Cai, X.F., and Huang, A.L. 2008. HCV core protein interacts with Dicer to antagonize RNA silencing. Virus Res. 133, 250–258.

    CAS  PubMed  Article  Google Scholar 

  32. Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., and Shiekhattar, R. 2005. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Cheng, Z.F. and Deutscher, M.P. 2005. An important role for RNase R in mRNA decay. Mol. Cell 17, 313–318.

    CAS  PubMed  Article  Google Scholar 

  34. Cho, K.H. 2017. The structure and function of the Gram-positive bacterial RNA degradosome. Front. Microbiol. 8, 154.

    PubMed  PubMed Central  Google Scholar 

  35. Cho, S., Beintema, J.J., and Zhang, J. 2005. The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 85, 208–220.

    CAS  PubMed  Article  Google Scholar 

  36. Christensen, D.G., Meyer, J.G., Baumgartner, J.T., D’Souza, A.K., Nelson, W.C., Payne, S.H., Kuhn, M.L., Schilling, B., and Wolfe, A.J. 2018. Identification of novel protein lysine acetyltransferases in Escherichia coli. mBio 9, e01905–18.

    PubMed  PubMed Central  Article  Google Scholar 

  37. Colak, G., Xie, Z., Zhu, A.Y., Dai, L., Lu, Z., Zhang, Y., Wan, X., Chen, Y., Cha, Y.H., Lin, H., et al. 2013. Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol. Cell. Proteomics 12, 3509–3520.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Condon, C. and Putzer, H. 2002. The phylogenetic distribution of bacterial ribonucleases. Nucleic Acids Res. 30, 5339–5346.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Court, D.L., Gan, J., Liang, Y.H., Shaw, G.X., Tropea, J.E., Costantino, N., Waugh, D.S., and Ji, X. 2013. RNase III: Genetics and function; structure and mechanism. Annu. Rev. Genet. 47, 405–431.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Crouch, R.J. 1974. Ribonuclease 3 does not degrade deoxyribonucleic acid-ribonucleic acid hybrids. J. Biol. Chem. 249, 1314–1316.

    CAS  PubMed  Article  Google Scholar 

  41. Daniels, S.M., Melendez-Peña, C.E., Scarborough, R.J., Daher, A., Christensen, H.S., El Far, M., Purcell, D.F.J., Lainé, S., and Gatignol, A. 2009. Characterization of the TRBP domain required for Dicer interaction and function in RNA interference. BMC Mol. Biol. 10, 38.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. Datta, A.K. and Burma, D.P. 1972. Association of ribonuclease I with ribosomes and their subunits. J. Biol. Chem. 247, 6795–6801.

    CAS  PubMed  Article  Google Scholar 

  43. Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Ketting, R.F., and Hannon, G.J. 2004. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235.

    CAS  PubMed  Article  Google Scholar 

  44. Deutscher, M.P. 2015. How bacterial cells keep ribonucleases under control. FEMS Microbiol. Rev. 39, 350–361.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Dickson, K.A., Haigis, M.C., and Raines, R.T. 2005. Ribonuclease inhibitor: structure and function. Prog. Nucleic Acid Res. Mol. Biol. 80, 349–374.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Dincbas-Renqvist, V., Pépin, G., Rakonjac, M., Plante, I., Ouellet, D.L., Hermansson, A., Goulet, I., Doucet, J., Samuelsson, B., Rådmark, O., et al. 2009. Human Dicer C-terminus functions as a 5-lipoxygenase binding domain. Biochim. Biophys. Acta 1789, 99–108.

    CAS  PubMed  Article  Google Scholar 

  47. Domingues, S., Moreira, R.N., Andrade, J.M., dos Santos, R.F., Bárria, C., Viegas, S.C., and Arraiano, C.M. 2015. The role of RNase R in trans-translation and ribosomal quality control. Biochimie 114, 113–118.

    CAS  PubMed  Article  Google Scholar 

  48. Donovan, W.P. and Kushner, S.R. 1986. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 83, 120–124.

    CAS  PubMed  Article  Google Scholar 

  49. Drake, M., Furuta, T., Suen, K.M., Gonzalez, G., Liu, B., Kalia, A., Ladbury, J.E., Fire, A.Z., Skeath, J.B., and Arur, S. 2014. A Requirement for ERK-dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in Caenorhabditis elegans. Dev. Cell 31, 614–628.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Dürwald, H. and Hoffmann-Berling, H. 1968. Endonuclease-I-deficient and ribonuclease I-deficient Escherichia coli mutants. J. Mol. Biol. 34, 331–346.

    PubMed  Article  Google Scholar 

  51. Dyer, K.D. and Rosenberg, H.F. 2006. The RNase a superfamily: generation of diversity and innate host defense. Mol. Divers. 10, 585–597.

    CAS  PubMed  Article  Google Scholar 

  52. Elson, D. 1958. Latent ribonuclease activity in a ribonucleoprotein. Biochim. Biophys. Acta 27, 216–217.

    CAS  PubMed  Article  Google Scholar 

  53. Filippov, V., Solovyev, V., Filippova, M., and Gill, S.S. 2000. A novel type of RNase III family proteins in eukaryotes. Gene 245, 213–221.

    CAS  PubMed  Article  Google Scholar 

  54. Fominaya, J.M. and Hofsteenge, J. 1992. Inactivation of ribonuclease inhibitor by thiol-disulfide exchange. J. Biol. Chem. 267, 24655–24660.

    CAS  PubMed  Article  Google Scholar 

  55. Fontaine, B.M., Martin, K.S., Garcia-Rodriguez, J.M., Jung, C., Briggs, L., Southwell, J.E., Jia, X., and Weinert, E.E. 2018. RNase I regulates Escherichia coli 2′,3′-cyclic nucleotide monophosphate levels and biofilm formation. Biochem. J. 475, 1491–1506.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Fukunaga, R., Han, B.W., Hung, J.H., Xu, J., Weng, Z.P., and Zamore, P.D. 2012. Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151, 533–546.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Gao, J., Lee, K., Zhao, M., Qiu, J., Zhan, X., Saxena, A., Moore, C.J., Cohen, S.N., and Georgiou, G. 2006. Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Mol. Microbiol. 61, 394–406.

    CAS  PubMed  Article  Google Scholar 

  58. Gbenle, G.O. 1990. Trypanosoma brucei: calcium-dependent endoribonuclease is associated with inhibitor protein. Exp. Parasitol. 71, 432–438.

    CAS  PubMed  Article  Google Scholar 

  59. Gegenheimer, P., Watson, N., and Apirion, D. 1977. Multiple pathways for primary processing of ribosomal RNA in Escherichia coli. J. Biol. Chem. 252, 3064–3073.

    CAS  PubMed  Article  Google Scholar 

  60. Gone, S., Alfonso-Prieto, M., Paudyal, S., and Nicholson, A.W. 2016. Mechanism of ribonuclease III catalytic regulation by serine phosphorylation. Sci. Rep. 6, 25448.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Górna, M.W., Carpousis, A.J., and Luisi, B.F. 2012. From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome. Q. Rev. Biophys. 45, 105–145.

    PubMed  Article  CAS  Google Scholar 

  62. Górna, M.W., Pietras, Z., Tsai, Y.C., Callaghan, A.J., Hernández, H., Robinson, C.V., and Luisi, B.F. 2010. The regulatory protein RraA modulates RNA-binding and helicase activities of the E. coli RNA degradosome. RNA 16, 553–562.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. Green, P.J. 1994. The Ribonucleases of higher-plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 421–445.

    CAS  Article  Google Scholar 

  64. Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. 2004. The microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240.

    CAS  PubMed  Article  Google Scholar 

  65. Gross, T.J., Powers, L.S., Boudreau, R.L., Brink, B., Reisetter, A., Goel, K., Gerke, A.K., Hassan, I.H., and Monick, M.M. 2014. A microRNA processing defect in smokers’ macrophages is linked to SUMOylation of the endonuclease DICER. J. Biol. Chem. 289, 12823–12834.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Guillet, V., Lapthorn, A., Hartley, R.W., and Mauguen, Y. 1993. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure 1, 165–176.

    CAS  PubMed  Article  Google Scholar 

  67. Gurevitz, M. and Apirion, D. 1983. Interplay among processing and degradative enzymes and a precursor ribonucleic acid in the selective maturation and maintenance of ribonucleic acid molecules. Biochemistry 22, 4000–4005.

    CAS  PubMed  Article  Google Scholar 

  68. Gurevitz, M., Watson, N., and Apirion, D. 1982. A cleavage site of ribonuclease F. A putative processing endoribonuclease from Escherichia coli. Eur. J. Biochem. 124, 553–559.

    CAS  PubMed  Article  Google Scholar 

  69. Haase, A.D., Jaskiewicz, L., Zhang, H.D., Lainé, S., Sack, R., Gatignol, A., and Filipowicz, W. 2005. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., and Kim, V.N. 2004. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Hardwick, S.W., Chan, V.S.Y., Broadhurst, R.W., and Luisi, B.F. 2011. An RNA degradosome assembly in Caulobacter crescentus. Nucleic Acids Res. 39, 1449–1459.

    CAS  PubMed  Article  Google Scholar 

  72. Hartley, R.W. 1988. Barnase and barstar: expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol. 202, 913–915.

    CAS  PubMed  Article  Google Scholar 

  73. Hartley, R.W. 1989. Barnase and barstar: two small proteins to fold and fit together. Trends Biochem. Sci. 14, 450–454.

    CAS  PubMed  Article  Google Scholar 

  74. Hartley, R.W. 1993. Directed mutagenesis and barnase-barstar recognition. Biochemistry 32, 5978–5984.

    CAS  PubMed  Article  Google Scholar 

  75. Hofsteenge, J., Kieffer, B., Matthies, R., Hemmings, B.A., and Stone, S.R. 1988. Amino acid sequence of the ribonuclease inhibitor from porcine liver reveals the presence of leucine-rich repeats. Biochemistry 27, 8537–8544.

    CAS  PubMed  Article  Google Scholar 

  76. Hua, Z. and Kao, T.H. 2006. Identification and characterization of components of a putative Petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility. Plant Cell 18, 2531–2553.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Hua, Z. and Kao, T.H. 2008. Identification of major lysine residues of S3-RNase of Petunia inflata involved in ubiquitin-26S proteasome-mediated degradation in vitro. Plant J. 54, 1094–1104.

    CAS  PubMed  Article  Google Scholar 

  78. Hunt, A., Rawlins, J.P., Thomaides, H.B., and Errington, J. 2006. Functional analysis of 11 putative essential genes in Bacillus subtilis. Microbiology 152, 2895–2907.

    CAS  PubMed  Article  Google Scholar 

  79. Irie, M. 1997. Structures and functions of ribonucleases. Yakugaku Zasshi 117, 561–582.

    CAS  PubMed  Article  Google Scholar 

  80. Jain, C. and Belasco, J.G. 1995. RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in Escherichia coli: unusual sensitivity of the rne transcript to RNase E activity. Genes Dev. 9, 84–96.

    CAS  PubMed  Article  Google Scholar 

  81. Jain, C., Deana, A., and Belasco, J.G. 2002. Consequences of RNase E scarcity in Escherichia coli. Mol. Microbiol. 43, 1053–1064.

    CAS  PubMed  Article  Google Scholar 

  82. Jarrige, A.C., Mathy, N., and Portier, C. 2001. PNPase autocontrols its expression by degrading a double-stranded structure in the pnp mRNA leader. EMBO J. 20, 6845–6855.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Jensen, P.E. and Leister, D. 2014. Chloroplast evolution, structure and functions. F1000Prime Rep. 6, 40.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. Ji, X. 2008. The mechanism of RNase III action: how dicer dices. Curr. Top. Microbiol. Immunol. 320, 99–116.

    CAS  PubMed  Google Scholar 

  85. Johnson, R.J., McCoy, J.G., Bingman, C.A., Phillips, G.N.Jr., and Raines, R.T. 2007. Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J. Mol. Biol. 368, 434–449.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Kaberdin, V.R., Miczak, A., Jakobsen, J.S., Lin-Chao, S., McDowall, K.J., and von Gabain, A. 1998. The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc. Natl. Acad. Sci. USA 95, 11637–11642.

    CAS  PubMed  Article  Google Scholar 

  87. Kaberdin, V.R., Singh, D., and Lin-Chao, S. 2011. Composition and conservation of the mRNA-degrading machinery in bacteria. J. Biomed. Sci. 18, 23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Kajava, A.V. 1998. Structural diversity of leucine-rich repeat proteins. J. Mol. Biol. 277, 519–527.

    CAS  PubMed  Article  Google Scholar 

  89. Kaplan, R. and Apirion, D. 1975. Decay of ribosomal ribonucleic acid in Escherichia coli cells starved for various nutrients. J. Biol. Chem. 250, 3174–3178.

    CAS  PubMed  Article  Google Scholar 

  90. Kerscher, O., Felberbaum, R., and Hochstrasser, M. 2006. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell. Dev. Biol. 22, 159–180.

    CAS  PubMed  Article  Google Scholar 

  91. Khemici, V., Poljak, L., Luisi, B.F., and Carpousis, A.J. 2008. The RNase E of Escherichia coli is a membrane-binding protein. Mol. Microbiol. 70, 799–813.

    CAS  PubMed  Google Scholar 

  92. Kim, M. and Kim, K. 2017. Stress-responsively modulated ymdAB-clsC operon plays a role in biofilm formation and apramycin susceptibility in Escherichia coli. FEMS Microbiol. Lett. 364, fnx114.

    Google Scholar 

  93. Kim, T., Lee, J., and Kim, K. 2013. Escherichia coli YmdB regulates biofilm formation independently of its role as an RNase III modulator. BMC Microbiol. 13, 266.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Kim, K., Manasherob, R., and Cohen, S.N. 2008. YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity. Genes Dev. 22, 3497–3508.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Kim, B.M., Schultz, L.W., and Raines, R.T. 1999. Variants of ribonuclease inhibitor that resist oxidation. Protein Sci. 8, 430–434.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Kitahara, K. and Miyazaki, K. 2011. Specific inhibition of bacterial RNase T2 by helix 41 of 16S ribosomal RNA. Nat. Commun. 2, 549.

    PubMed  Article  CAS  Google Scholar 

  97. Klockow, L.C., Sharifi, H.J., Wen, X., Flagg, M., Furuya, A.K.M., Nekorchuk, M., and de Noronha, C.M.C. 2013. The HIV-1 protein Vpr targets the endoribonuclease Dicer for proteasomal degradation to boost macrophage infection. Virology 444, 191–202.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  98. Kobe, B. and Deisenhofer, J. 1995. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183–186.

    CAS  PubMed  Article  Google Scholar 

  99. Koo, H., Park, S., Kwak, M.K., and Lee, J.S. 2020. Regulation of gene expression by protein lysine acetylation in Salmonella. J. Microbiol. 58, 979–987.

    PubMed  Article  CAS  Google Scholar 

  100. Koslover, D.J., Callaghan, A.J., Marcaida, M.J., Garman, E.F., Martick, M., Scott, W.G., and Luisi, B.F. 2008. The crystal structure of the Escherichia coli RNase E apoprotein and a mechanism for RNA degradation. Structure 16, 1238–1244.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Kosuge, T., Isemura, M., Takahashi, Y., Odani, S., and Odani, S. 2003. Ribonuclease inhibitors in Malus x domestica (common apple): isolation and partial characterization. Biosci. Biotechnol. Biochem. 67, 698–703.

    CAS  PubMed  Article  Google Scholar 

  102. Krajcikova, D. and Hartley, R.W. 2004. A new member of the bacterial ribonuclease inhibitor family from Saccharopolyspora erythraea. FEBS Lett. 557, 164–168.

    CAS  PubMed  Article  Google Scholar 

  103. Krajcikova, D., Hartley, R.W., and Sevcik, J. 1998. Isolation and purification of two novel streptomycete RNase inhibitors, SaI14 and SaI20, and cloning, sequencing, and expression in Escherichia coli of the gene coding for SaI14. J. Bacteriol. 180, 1582–1585.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Lai, Z., Ma, W., Han, B., Liang, L., Zhang, Y., Hong, G., and Xue, Y. 2002. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol. Biol. 50, 29–42.

    CAS  PubMed  Article  Google Scholar 

  105. Lambert, P.A. and Smith, A.R. 1976. Antimicrobial action of dodecyldiethanolamine: activation of ribonuclease I in Escherichia coli. Microbios 17, 35–49.

    CAS  PubMed  Google Scholar 

  106. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Rådmark, O., Kim, S., et al. 2003a. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.

    CAS  PubMed  Article  Google Scholar 

  107. Lee, K., Bernstein, J.A., and Cohen, S.N. 2002. RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol. Microbiol. 43, 1445–1456.

    CAS  PubMed  Article  Google Scholar 

  108. Lee, F.S., Fox, E.A., Zhou, H.M., Strydom, D.J., and Vallee, B.L. 1988. Primary structure of human placental ribonuclease inhibitor. Biochemistry 27, 8545–8553.

    CAS  PubMed  Article  Google Scholar 

  109. Lee, Y., Hur, I., Park, S.Y., Kim, Y.K., Suh, M.R., and Kim, V.N. 2006. The role of PACT in the RNA silencing pathway. EMBO J. 25, 522–532.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Lee, M., Joo, M., Sim, M., Sim, S.H., Kim, H.L., Lee, J., Ryu, M., Yeom, J.H., Hahn, Y., Ha, N.C., et al. 2019a. The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli. Sci. Rep. 9, 17257.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. Lee, J., Lee, D.H., Jeon, C.O., and Lee, K. 2019b. RNase G controls tpiA mRNA abundance in response to oxygen availability in Escherichia coli. J. Microbiol. 57, 910–917.

    CAS  PubMed  Article  Google Scholar 

  112. Lee, M., Ryu, M., Joo, M., Seo, Y.J., Lee, J., Kim, H.M., Shin, E., Yeom, J.H., Kim, Y.H., Bae, J., et al. 2021. Endoribonuclease-mediated control of hns mRNA stability constitutes a key regulatory pathway for Salmonella Typhimurium pathogenicity island 1 expression. PLoS Pathog. 17, e1009263.

    PubMed  Article  Google Scholar 

  113. Lee, F.S., Shapiro, R., and Vallee, B.L. 1989. Tight-binding inhibition of angiogenin and ribonuclease A by placental ribonuclease inhibitor. Biochemistry 28, 225–230.

    CAS  PubMed  Article  Google Scholar 

  114. Lee, F.S. and Vallee, B.L. 1993. Structure and action of mammalian ribonuclease (angiogenin) inhibitor. Prog. Nucleic Acid Res. Mol. Biol. 44, 1–30.

    CAS  PubMed  Article  Google Scholar 

  115. Lee, M., Yeom, J.H., Sim, S.H., Ahn, S., and Lee, K. 2009. Effects of Escherichia coli RraA orthologs of Vibrio vulnificus on the ribonucleolytic activity of RNase E in vivo. Curr. Microbiol. 58, 349–353.

    CAS  PubMed  Article  Google Scholar 

  116. Lee, K., Zhan, X., Gao, J., Qiu, J., Feng, Y., Meganathan, R., Cohen, S.N., and Georgiou, G. 2003b. RraA. a protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell 114, 623–634.

    CAS  PubMed  Article  Google Scholar 

  117. Lee, H.Y., Zhou, K.H., Smith, A.M., Noland, C.L., and Doudna, J.A. 2013. Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res. 41, 6568–6576.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. Lehnik-Habrink, M., Newman, J., Rothe, F.M., Solovyova, A.S., Rodrigues, C., Herzberg, C., Commichau, F.M., Lewis, R.J., and Stülke, J. 2011. RNase Y in Bacillus subtilis: a natively disordered protein that is the functional equivalent of RNase E from Escherichia coli. J. Bacteriol. 193, 5431–5441.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Li, Z. and Deutscher, M.P. 1996. Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo. Cell 86, 503–512.

    CAS  PubMed  Article  Google Scholar 

  120. Li, Z. and Deutscher, M.P. 2002. RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA 8, 97–109.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Li, Z., Pandit, S., and Deutscher, M.P. 1999. RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA. EMBO J. 18, 2878–2885.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. Li, S., Sun, P., Williams, J.S., and Kao, T.H. 2014. Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata. Plant Reprod. 27, 31–45.

    PubMed  Article  CAS  Google Scholar 

  123. Liang, W. and Deutscher, M.P. 2010. A novel mechanism for ribonuclease regulation: transfer-messenger RNA (tmRNA) and its associated protein SmpB regulate the stability of RNase R. J. Biol. Chem. 285, 29054–29058.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. Liang, W. and Deutscher, M.P. 2012a. Post-translational modification of RNase R is regulated by stress-dependent reduction in the acetylating enzyme Pka (YfiQ). RNA 18, 37–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. Liang, W. and Deutscher, M.P. 2012b. Transfer-messenger RNA-SmpB protein regulates ribonuclease R turnover by promoting binding of HslUV and Lon proteases. J. Biol. Chem. 287, 33472–33479.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Liang, W. and Deutscher, M.P. 2013. Ribosomes regulate the stability and action of the exoribonuclease RNase R. J. Biol. Chem. 288, 34791–34798.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. Liang, W., Malhotra, A., and Deutscher, M.P. 2011. Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R. Mol. Cell 44, 160–166.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. Lim, B. and Lee, K. 2015. Stability of the osmoregulated promoter-derived proP mRNA is posttranscriptionally regulated by RNase III in Escherichia coli. J. Bacteriol. 197, 1297–1305.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Lim, B., Sim, M., Lee, H., Hyun, S., Lee, Y., Hahn, Y., Shin, E., and Lee, K. 2015. Regulation of Escherichia coli RNase III activity. J. Microbiol. 53, 487–494.

    CAS  PubMed  Article  Google Scholar 

  130. Lin-Chao, S. and Cohen, S.N. 1991. The rate of processing and degradation of antisense RNAI regulates the replication of ColE1-type plasmids in vivo. Cell 65, 1233–1242.

    CAS  PubMed  Article  Google Scholar 

  131. Lindahl, L. and Zengel, J.M. 1979. Operon-specific regulation of ribosomal protein synthesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 76, 6542–6546.

    CAS  PubMed  Article  Google Scholar 

  132. Liou, G.G., Jane, W.N., Cohen, S.N., Lin, N.S., and Lin-Chao, S. 2001. RNA degradosomes exist in vivo in Escherichia coli as multi-component complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. Proc. Natl. Acad. Sci. USA 98, 63–68.

    CAS  PubMed  Article  Google Scholar 

  133. Lomax, J.E., Bianchetti, C.M., Chang, A., Phillips, G.N.Jr., Fox, B.G., and Raines, R.T. 2014. Functional evolution of ribonuclease inhibitor: insights from birds and reptiles. J. Mol. Biol. 426, 3041–3056.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. Lu, L., Li, J., Moussaoui, M., and Boix, E. 2018. Immune modulation by human secreted RNases at the extracellular space. Front. Immunol. 9, 1012.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. Lu, F. and Taghbalout, A. 2013. Membrane association via an aminoterminal amphipathic helix is required for the cellular organization and function of RNase II. J. Biol. Chem. 288, 7241–7251.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. Lu, F. and Taghbalout, A. 2014. The Escherichia coli major exoribonuclease RNase II is a component of the RNA degradosome. Biosci. Rep. 34, e00166.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  137. Luciano, D.J., Levenson-Palmer, R., and Belasco, J.G. 2019. Stresses that raise Np4A levels induce protective nucleoside tetraphosphate capping of bacterial RNA. Mol. Cell 75, 957–966.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. Luciano, D.J., Vasilyev, N., Richards, J., Serganov, A., and Belasco, J.G. 2017. A novel RNA phosphorylation state enables 5′ end-dependent degradation in Escherichia coli. Mol. Cell 67, 44–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. Macrae, I.J., Li, F., Zhou, K., Cande, W.Z., and Doudna, J.A. 2006. Structure of Dicer and mechanistic implications for RNAi. Cold Spring Harb. Symp. Quant. Biol. 71, 73–80.

    CAS  PubMed  Article  Google Scholar 

  140. Macrae, I.J., Ma, E., Zhou, M., Robinson, C.V., and Doudna, J.A. 2008. In vitro reconstitution of the human RISC-loading complex. Proc. Natl. Acad. Sci. USA 105, 512–517.

    CAS  PubMed  Article  Google Scholar 

  141. Makarov, E.M. and Apirion, D. 1992. 10Sa RNA: processing by and inhibition of RNase III. Biochem. Int. 26, 1115–1124.

    CAS  PubMed  Google Scholar 

  142. Marchand, I., Nicholson, A.W., and Dreyfus, M. 2001. Bacteriophage T7 protein kinase phosphorylates RNase E and stabilizes mRNAs synthesized by T7 RNA polymerase. Mol. Microbiol. 42, 767–776.

    CAS  PubMed  Article  Google Scholar 

  143. Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M., and Penny, D. 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci. USA 99, 12246–12251.

    CAS  PubMed  Article  Google Scholar 

  144. Masse, E., Escorcia, F.E., and Gottesman, S. 2003. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 17, 2374–2383.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. Matsunaga, J., Dyer, M., Simons, E.L., and Simons, R.W. 1996a. Expression and regulation of the rnc and pdxJ operons of Escherichia coli. Mol. Microbiol. 22, 977–989.

    CAS  PubMed  Article  Google Scholar 

  146. Matsunaga, J., Simons, E.L., and Simons, R.W. 1996b. RNase III autoregulation: structure and function of rncO, the posttranscriptional “operator”. RNA 2, 1228–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Mayer, J.E. and Schweiger, M. 1983. RNase III is positively regulated by T7 protein kinase. J. Biol. Chem. 258, 5340–5343.

    CAS  PubMed  Article  Google Scholar 

  148. McClure, B.A., Haring, V., Ebert, P.R., Anderson, M.A., Simpson, R.J., Sakiyama, F., and Clarke, A.E. 1989. Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342, 955–957.

    CAS  PubMed  Article  Google Scholar 

  149. McDowall, K.J. and Cohen, S.N. 1996. The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site. J. Mol. Biol. 255, 349–355.

    CAS  PubMed  Article  Google Scholar 

  150. Miczak, A., Kaberdin, V.R., Wei, C.L., and Lin-Chao, S. 1996. Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc. Natl. Acad. Sci. USA 93, 3865–3869.

    CAS  PubMed  Article  Google Scholar 

  151. Mohanty, B.K. and Kushner, S.R. 2003. Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay. Mol. Microbiol. 50, 645–658.

    CAS  PubMed  Article  Google Scholar 

  152. Monzingo, A.F., Gao, J., Qiu, J., Georgiou, G., and Robertus, J.D. 2003. The X-ray structure of Escherichia coli RraA (MenG), A protein inhibitor of RNA processing. J. Mol. Biol. 332, 1015–1024.

    CAS  PubMed  Article  Google Scholar 

  153. Moore, C.J., Go, H., Shin, E., Ha, H.J., Song, S., Ha, N.C., Kim, Y.H., Cohen, S.N., and Lee, K. 2021. Substrate-dependent effects of quaternary structure on RNase E activity. Genes Dev. doi:https://doi.org/10.1101/gad.335828.119.

  154. Morita, T., Maki, K., and Aiba, H. 2005. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev. 19, 2176–2186.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. Murashko, O.N., Kaberdin, V.R., and Lin-Chao, S. 2012. Membrane binding of Escherichia coli RNase E catalytic domain stabilizes protein structure and increases RNA substrate affinity. Proc. Natl. Acad. Sci. USA 109, 7019–7024.

    CAS  PubMed  Article  Google Scholar 

  156. Na, D. 2020. User guides for biologists to learn computational methods. J. Microbiol. 58, 173–175.

    PubMed  Article  Google Scholar 

  157. Neu, H.C. and Heppel, L.A. 1964a. Some observations on the “Latent” ribonuclease of Escherichia coli. Proc. Natl. Acad. Sci. USA 51, 1267–1274.

    CAS  PubMed  Article  Google Scholar 

  158. Neu, H.C. and Heppel, L.A. 1964b. The release of ribonuclease into the medium when Escherichia coli cells are converted to speroplasts. J. Biol. Chem. 239, 3893–3900.

    CAS  PubMed  Article  Google Scholar 

  159. Neu, H.C. and Heppel, L.A. 1965. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J. Biol. Chem. 240, 3685–3692.

    CAS  PubMed  Article  Google Scholar 

  160. Nicholson, A.W. 2014. Ribonuclease III mechanisms of double-stranded RNA cleavage. Wiley Interdiscip. Rev. RNA 5, 31–48.

    CAS  PubMed  Article  Google Scholar 

  161. Nimmo, R.A. and Slack, F.J. 2009. An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma 118, 405–418.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. Nossal, N.G. and Singer, M.F. 1968. The processive degradation of individual polyribonucleotide chains. I. Escherichia coli ribonuclease II. J. Biol. Chem. 243, 913–922.

    CAS  PubMed  Article  Google Scholar 

  163. Ota, H., Sakurai, M., Gupta, R., Valente, L., Wulff, B.E., Ariyoshi, K., Iizasa, H., Davuluri, R.V., and Nishikura, K. 2013. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell 153, 575–589.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. Papageorgiou, A.C., Shapiro, R., and Acharya, K.R. 1997. Molecular recognition of human angiogenin by placental ribonuclease inhibitor-an X-ray crystallographic study at 2.0 angstrom resolution. EMBO J. 16, 5162–5177.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. Paudyal, S., Alfonso-Prieto, M., Carnevale, V., Redhu, S.K., Klein, M.L., and Nicholson, A.W. 2015. Combined computational and experimental analysis of a complex of ribonuclease III and the regulatory macrodomain protein, YmdB. Proteins 83, 459–472.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. Pepin, G., Perron, M.P., and Provost, P. 2012. Regulation of human Dicer by the resident ER membrane protein CLIMP-63. Nucleic Acids Res. 40, 11603–11617.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. Pfeiffer, V., Papenfort, K., Lucchini, S., Hinton, J.C., and Vogel, J. 2009. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat. Struct. Mol. Biol. 16, 840–846.

    CAS  PubMed  Article  Google Scholar 

  168. Pietras, Z., Hardwick, S.W., Swiezewski, S., and Luisi, B.F. 2013. Potential regulatory interactions of Escherichia coli RraA protein with DEAD-box helicases. J. Biol. Chem. 288, 31919–31929.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. Portier, C., Dondon, L., Grunberg-Manago, M., and Régnier, P. 1987. The first step in the functional inactivation of the Escherichia coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5′ end. EMBO J. 6, 2165–2170.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. Prévost, K., Desnoyers, G., Jacques, J.F., Lavoie, F., and Massé, E. 2011. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. Genes Dev. 25, 385–396.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  171. Purusharth, R.I., Klein, F., Sulthana, S., Jäger, S., Jagannadham, M.V., Evguenieva-Hackenberg, E., Ray, M.K., and Klug, G. 2005. Exoribonuclease R interacts with endoribonuclease E and an RNA helicase in the psychrotrophic bacterium Pseudomonas syringae Lz4W. J. Biol. Chem. 280, 14572–14578.

    CAS  PubMed  Article  Google Scholar 

  172. Py, B., Higgins, C.F., Krisch, H.M., and Carpousis, A.J. 1996. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381, 169–172.

    CAS  PubMed  Article  Google Scholar 

  173. Qi, D., Alawneh, A.M., Yonesaki, T., and Otsuka, Y. 2015. Rapid degradation of host mRNAs by stimulation of RNase E activity by Srd of bacteriophage T4. Genetics 201, 977–987.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  174. Qiao, H., Wang, H., Zhao, L., Zhou, J., Huang, J., Zhang, Y., and Xue, Y. 2004. The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16, 582–595.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. Rådmark, O., Werz, O., Steinhilber, D., and Samuelsson, B. 2007. 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem. Sci. 32, 332–341.

    PubMed  Article  CAS  Google Scholar 

  176. Regnier, P. and Portier, C. 1986. Initiation, attenuation and RNase III processing of transcripts from the Escherichia coli operon encoding ribosomal protein S15 and polynucleotide phosphorylase. J. Mol. Biol. 187, 23–32.

    CAS  PubMed  Article  Google Scholar 

  177. Ren, J., Lee, J., and Na, D. 2020. Recent advances in genetic engineering tools based on synthetic biology. J. Microbiol. 58, 1–10.

    CAS  Article  Google Scholar 

  178. Richards, J., Luciano, D.J., and Belasco, J.G. 2012. Influence of translation on RppH-dependent mRNA degradation in Escherichia coli. Mol. Microbiol. 86, 1063–1072.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. Richards, J., Mehta, P., and Karzai, A.W. 2006. RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Mol. Microbiol. 62, 1700–1712.

    CAS  PubMed  Article  Google Scholar 

  180. Robert-Le Meur, M. and Portier, C. 1992. E. coli polynucleotide phosphorylase expression is autoregulated through an RNase III-dependent mechanism. EMBO J. 11, 2633–2641.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  181. Robertson, E.S., Aggison, L.A., and Nicholson, A.W. 1994. Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infected Escherichia coli. Mol. Microbiol. 11, 1045–1057.

    CAS  PubMed  Article  Google Scholar 

  182. Rutkoski, T.J. and Raines, R.T. 2008. Evasion of ribonuclease inhibitor as a determinant of ribonuclease cytotoxicity. Curr. Pharm. Biotechnol. 9, 185.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. Schilling, B., Christensen, D., Davis, R., Sahu, A.K., Hu, L.I., Walker-Peddakotla, A., Sorensen, D.J., Zemaitaitis, B., Gibson, B.W., and Wolfe, A.J. 2015. Protein acetylation dynamics in response to carbon overflow in Escherichia coli. Mol. Microbiol. 98, 847–863.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  184. Sevcik, J., Urbanikova, L., Dauter, Z., and Wilson, K.S. 1998. Recognition of RNase Sa by the inhibitor barstar: structure of the complex at 1.7 A resolution. Acta Crystallogr. D Biol. Crystallogr. 54, 954–963.

    CAS  PubMed  Article  Google Scholar 

  185. Shapiro, R. 2001. Cytoplasmic ribonuclease inhibitor. Methods Enzymol. 341, 611–628.

    CAS  PubMed  Article  Google Scholar 

  186. Shen, H., Liu, H., Wang, H., Teng, M., and Li, X. 2013. Preliminary crystallographic analysis of RraB from Escherichia coli. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69, 1268–1271.

    CAS  Article  Google Scholar 

  187. Sim, S., Kim, K., and Lee, Y. 2002. 3’-end processing of precursor M1 RNA by the N-terminal half of RNase E. FEBS Lett. 529, 225–231.

    CAS  PubMed  Article  Google Scholar 

  188. Sim, M., Lim, B., Sim, S.H., Kim, D., Jung, E., Lee, Y., and Lee, K. 2014. Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli. PLoS ONE 9, e100520.

    PubMed  PubMed Central  Article  Google Scholar 

  189. Sim, S.H., Yeom, J.H., Shin, C., Song, W.S., Shin, E., Kim, H.M., Cha, C.J., Han, S.H., Ha, N.C., Kim, S.W., et al. 2010. Escherichia coli ribonuclease III activity is downregulated by osmotic stress: consequences for the degradation of bdm mRNA in biofilm formation. Mol. Microbiol. 75, 413–425.

    CAS  PubMed  Article  Google Scholar 

  190. Sims, T.L. and Ordanic, M. 2001. Identification of a S-ribonuclease-binding protein in Petunia hybrida. Plant Mol. Biol. 47, 771–783.

    CAS  PubMed  Article  Google Scholar 

  191. Singh, D., Chang, S.J., Lin, P.H., Averina, O.V., Kaberdin, V.R., and Lin-Chao, S. 2009. Regulation of ribonuclease E activity by the L4 ribosomal protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 106, 864–869.

    CAS  PubMed  Article  Google Scholar 

  192. Song, L., Gao, S., Jiang, W., Chen, S., Liu, Y., Zhou, L., and Huang, W. 2011. Silencing suppressors: viral weapons for countering host cell defenses. Protein Cell 2, 273–281.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  193. Song, W., Kim, Y.H., Sim, S.H., Hwang, S., Lee, J.H., Lee, Y., Bae, J., Hwang, J., and Lee, K. 2014. Antibiotic stress-induced modulation of the endoribonucleolytic activity of RNase III and RNase G confers resistance to aminoglycoside antibiotics in Escherichia coli. Nucleic Acids Res. 42, 4669–4681.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. Song, L., Wang, G., Malhotra, A., Deutscher, M.P., and Liang, W. 2016. Reversible acetylation on Lys501 regulates the activity of RNase II. Nucleic Acids Res. 44, 1979–1988.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  195. Sousa, S., Marchand, I., and Dreyfus, M. 2001. Autoregulation allows Escherichia coli RNase E to adjust continuously its synthesis to that of its substrates. Mol. Microbiol. 42, 867–878.

    CAS  PubMed  Article  Google Scholar 

  196. Spahr, P.F. and Gesteland, R.F. 1968. Specific cleavage of bacteriophage R17 RNA by an endonuclease isolated from E. coli MRE-600. Proc. Natl. Acad. Sci. USA 59, 876–883.

    CAS  PubMed  Article  Google Scholar 

  197. Srivastava, S.K., Cannistraro, V.J., and Kennell, D. 1992. Broad-specificity endoribonucleases and mRNA degradation in Escherichia coli. J. Bacteriol. 174, 56–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  198. Sulthana, S., Basturea, G.N., and Deutscher, M.P. 2016. Elucidation of pathways of ribosomal RNA degradation: an essential role for RNase E. RNA 22, 1163–1171.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  199. Takayama, S. and Isogai, A. 2005. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56, 467–489.

    CAS  PubMed  Article  Google Scholar 

  200. Tang, X., Li, M., Tucker, L., and Ramratnam, B. 2011. Glycogen synthase kinase 3 beta (GSK3β) phosphorylates the RNAase III enzyme Drosha at S300 and S302. PLoS ONE 6, e20391.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  201. Tang, X., Wen, S., Zheng, D., Tucker, L., Cao, L.L., Pantazatos, D., Moss, S.F., and Ramratnam, B. 2013. Acetylation of Drosha on the N-terminus inhibits its degradation by ubiquitination. PLoS ONE 8, e72503.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  202. Tang, X., Zhang, Y., Tucker, L., and Ramratnam, B. 2010. Phosphorylation of the RNase III enzyme Drosha at Serine300 or Serine302 is required for its nuclear localization. Nucleic Acids Res. 38, 6610–6619.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  203. Tock, M.R., Walsh, A.P., Carroll, G., and McDowall, K.J. 2000. The CafA protein required for the 5’-maturation of 16S rRNA is a 5’-end-dependent ribonuclease that has context-dependent broad sequence specificity. J. Biol. Chem. 275, 8726–8732.

    CAS  PubMed  Article  Google Scholar 

  204. Ueno, H. and Yonesaki, T. 2004. Phage-induced change in the stability of mRNAs. Virology 329, 134–141.

    CAS  PubMed  Article  Google Scholar 

  205. Ulferts, R. and Ziebuhr, J. 2011. Nidovirus ribonucleases: structures and functions in viral replication. RNA Biol. 8, 295–304.

    CAS  PubMed  Article  Google Scholar 

  206. Van den Bossche, A., Hardwick, S.W., Ceyssens, P.J., Hendrix, H., Voet, M., Dendooven, T., Bandyra, K.J., De Maeyer, M., Aertsen, A., Noben, J.P., et al. 2016. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome. Elife 5, e16413.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  207. van Rij, R.P. and Berezikov, E. 2009. Small RNAs and the control of transposons and viruses in Drosophila. Trends Microbiol. 17, 163–171.

    CAS  PubMed  Article  Google Scholar 

  208. Venkataraman, K., Guja, K.E., Garcia-Diaz, M., and Karzai, A.W. 2014. Non-stop mRNA decay: a special attribute of trans-translation mediated ribosome rescue. Front. Microbiol. 5, 93.

    PubMed  PubMed Central  Article  Google Scholar 

  209. Vermeulen, A., Behlen, L., Reynolds, A., Wolfson, A., Marshall, W.S., Karpilow, J., and Khvorova, A. 2005. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11, 674–682.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  210. Vincent, H.A. and Deutscher, M.P. 2006. Substrate recognition and catalysis by the exoribonuclease RNase R. J. Biol. Chem. 281, 29769–29775.

    CAS  PubMed  Article  Google Scholar 

  211. Vincent, H.A. and Deutscher, M.P. 2009a. Insights into how RNase R degrades structured RNA: analysis of the nuclease domain. J. Mol. Biol. 387, 570–583.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  212. Vincent, H.A. and Deutscher, M.P. 2009b. The roles of individual domains of RNase R in substrate binding and exoribonuclease activity. The nuclease domain is sufficient for digestion of structured RNA. J. Biol. Chem. 284, 486–494.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  213. Voss, J.E., Luisi, B.F., and Hardwick, S.W. 2014. Molecular recognition of RhlB and RNase D in the Caulobacter crescentus RNA degradosome. Nucleic Acids Res. 42, 13294–13305.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  214. Wachi, M., Umitsuki, G., Shimizu, M., Takada, A., and Nagai, K. 1999. Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5′ end of 16S rRNA. Biochem. Biophys. Res. Commun. 259, 483–488.

    CAS  PubMed  Article  Google Scholar 

  215. Wahid, F., Shehzad, A., Khan, T., and Kim, Y.Y. 2010. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim. Biophys. Acta 1803, 1231–1243.

    CAS  PubMed  Article  Google Scholar 

  216. Wang, Y., Kato, N., Jazag, A., Dharel, N., Otsuka, M., Taniguchi, H., Kawabe, T., and Omata, M. 2006. Hepatitis C virus core protein is a potent inhibitor of RNA silencing-based antiviral response. Gastroenterology 130, 883–892.

    CAS  PubMed  Article  Google Scholar 

  217. Wang, H.W., Noland, C., Siridechadilok, B., Taylor, D.W., Ma, E.B., Felderer, K., Doudna, J.A., and Nogales, E. 2009. Structural insights into RNA processing by the human RISC-loading complex. Nat. Struct. Mol. Biol. 16, 1148–1153.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  218. Weinert, B.T., Iesmantavicius, V., Wagner, S.A., Schölz, C., Gummesson, B., Beli, P., Nyström, T., and Choudhary, C. 2013. Acetylphosphate is a critical determinant of lysine acetylation in E. coli. Mol. Cell 51, 265–272.

    CAS  PubMed  Article  Google Scholar 

  219. Williams, J.S., Wu, L., Li, S., Sun, P., and Kao, T.H. 2015. Insight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions. Front. Plant Sci. 6, 41.

    PubMed  PubMed Central  Google Scholar 

  220. Wilson, R.C., Tambe, A., Kidwell, M.A., Noland, C.L., Schneider, C.P., and Doudna, J.A. 2015. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol. Cell 57, 397–407.

    CAS  PubMed  Article  Google Scholar 

  221. Wool, I.G. 1996. Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21, 164–165.

    CAS  PubMed  Article  Google Scholar 

  222. Worrall, J.A., Górna, M., Crump, N.T., Phillips, L.G., Tuck, A.C., Price, A.J., Bavro, V.N., and Luisi, B.F. 2008. Reconstitution and analysis of the multienzyme Escherichia coli RNA degradosome. J. Mol. Biol. 382, 870–883.

    CAS  PubMed  Article  Google Scholar 

  223. Yakovlev, G.I., Moiseyev, G.P., Protasevich, II, Ranjbar, B., Bocharov, A.L., Kirpichnikov, M.P., Gilli, R.M., Briand, C.M., Hartley, R.W., and Makarov, A.A. 1995. Dissociation constants and thermal stability of complexes of Bacillus intermedius RNase and the protein inhibitor of Bacillus amyloliquefaciens RNase. FEBS Lett. 366, 156–158.

    CAS  PubMed  Article  Google Scholar 

  224. Yang, W., Chendrimada, T.P., Wang, Q., Higuchi, M., Seeburg, P.H., Shiekhattar, R., and Nishikura, K. 2006. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 13, 13–21.

    CAS  PubMed  Article  Google Scholar 

  225. Yang, Q., Li, W., She, H., Dou, J., Duong, D.M., Du, Y., Yang, S.H., Seyfried, N.T., Fu, H.A., Gao, G.D., et al. 2015. Stress induces p38 MAPK-mediated phosphorylation and inhibition of Drosha-dependent cell survival. Mol. Cell 57, 721–734.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  226. Yates, J.L. and Nomura, M. 1980. E. coli ribosomal protein L4 is a feedback regulatory protein. Cell 21, 517–522.

    CAS  PubMed  Article  Google Scholar 

  227. Ye, P.Y., Liu, Y., Chen, C., Tang, F., Wu, Q., Wang, X., Liu, C.G., Liu, X., Liu, R., Liu, Y., et al. 2015. An mTORC1-Mdm2-Drosha Axis for miRNA biogenesis in response to glucose- and amino acid-deprivation. Mol. Cell 57, 708–720.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  228. Yeom, J.H., Go, H., Shin, E., Kim, H.L., Han, S.H., Moore, C.J., Bae, J., and Lee, K. 2008a. Inhibitory effects of RraA and RraB on RNAse E-related enzymes imply conserved functions in the regulated enzymatic cleavage of RNA. FEMS Microbiol. Lett. 285, 10–15.

    CAS  PubMed  Article  Google Scholar 

  229. Yeom, J.H., Shin, E., Go, H., Sim, S.H., Seong, M.J., and Lee, K. 2008b. Functional implications of the conserved action of regulators of ribonuclease activity. J. Microbiol. Biotechnol. 18, 1353–1356.

    CAS  PubMed  Google Scholar 

  230. Young, R.A. and Steitz, J.A. 1978. Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA. Proc. Natl. Acad. Sci. USA 75, 3593–3597.

    CAS  PubMed  Article  Google Scholar 

  231. Zeng, Y., Yi, R., and Cullen, B.R. 2003. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA 100, 9779–9784.

    CAS  PubMed  Article  Google Scholar 

  232. Zhang, J.Y., Deng, X.M., Li, F.P., Wang, L., Huang, Q.Y., Zhang, C.C., and Chen, W.L. 2014. RNase E forms a complex with polynucleotide phosphorylase in cyanobacteria via a cyanobacterial-specific nonapeptide in the noncatalytic region. RNA 20, 568–579.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  233. Zhang, D., de Souza, R.F., Anantharaman, V., Iyer, L.M., and Aravind, L. 2012. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct 7, 18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  234. Zhang, K., Zheng, S., Yang, J.S., Chen, Y., and Cheng, Z. 2013. Comprehensive profiling of protein lysine acetylation in Escherichia coli. J. Proteome Res. 12, 844–851.

    CAS  PubMed  Article  Google Scholar 

  235. Zhao, L., Huang, J., Zhao, Z., Li, Q., Sims, T.L., and Xue, Y. 2010. The Skp1-like protein SSK1 is required for cross-pollen compatibility in S-RNase-based self-incompatibility. Plant J. 62, 52–63.

    CAS  PubMed  Article  Google Scholar 

  236. Zhao, Y. and Srivastava, D. 2007. A developmental view of microRNA function. Trends Biochem. Sci. 32, 189–197.

    CAS  PubMed  Article  Google Scholar 

  237. Zhou, C., Zhang, J., Hu, X., Li, C., Wang, L., Huang, Q., and Chen, W. 2020. RNase II binds to RNase E and modulates its endoribonucleolytic activity in the cyanobacterium Anabaena PCC 7120. Nucleic Acids Res. 48, 3922–3934.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  238. Zhu, L.Q., Gangopadhyay, T., Padmanabha, K.P., and Deutscher, M.P. 1990. Escherichia coli rna gene encoding RNase I: cloning, overexpression, subcellular distribution of the enzyme, and use of an rna deletion to identify additional RNases. J. Bacteriol. 172, 3146–3151.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  239. Zilhão, R., Cairrão, F., Régnier, P., and Arraiano, C.M. 1996. PNPase modulates RNase II expression in Escherichia coli: implications for mRNA decay and cell metabolism. Mol. Microbiol. 20, 1033–1042.

    PubMed  Article  Google Scholar 

  240. Zilhão, R., Régnier, P., and Arraiano, C.M. 1995. The role of endonucleases in the expression of ribonuclease II in Escherichia coli. FEMS Microbiol. Lett. 130, 237–244.

    PubMed  Article  Google Scholar 

  241. Zundel, M.A., Basturea, G.N., and Deutscher, M.P. 2009. Initiation of ribosome degradation during starvation in Escherichia coli. RNA 15, 977–983.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  242. Zuo, Y., Vincent, H.A., Zhang, J., Wang, Y., Deutscher, M.P., and Malhotra, A. 2006. Structural basis for processivity and single-strand specificity of RNase II. Mol. Cell 24, 149–156.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Chung-Ang University Graduate Research Scholarship in 2017 and the National Research Foundation of Korea (NRF) (grant no. 2019R1I1-A1A01063517 to M. L).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Minho Lee or Kangseok Lee.

Additional information

Conflict of Interest

We have no conflicts of interest to report.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Lee, M. & Lee, K. Trans-acting regulators of ribonuclease activity. J Microbiol. (2021). https://doi.org/10.1007/s12275-021-0650-3

Download citation

Keywords

  • RNase regulator
  • RNase stability
  • post-translational regulation of RNase
  • trans-acting regulator
  • proteolysis