iTRAQ-facilitated proteomic analysis of Bacillus cereus via degradation of malachite green

Abstract

The wide use of malachite green (MG) as a dye has caused substantial concern owing to its toxicity. Bacillus cereus can against the toxic effect of MG and efficiently decolourise it. However, detailed information regarding its underlying adaptation and degradation mechanisms based on proteomic data is scarce. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ)-facilitated quantitative method was applied to analyse the molecular mechanisms by which B. cereus degrades MG. Based on this analysis, 209 upregulated proteins and 198 downregulated proteins were identified with a false discovery rate of 1% or less during MG biodegradation. Gene ontology and KEGG analysis determined that the differentially expressed proteins were enriched in metabolic processes, catalytic activity, antioxidant activity, and responses to stimuli. Furthermore, real-time qPCR was utilised to further confirm the regulated proteins involved in benzoate degradation. The proteins BCE_4076 (Acetyl-CoA acetyltransferase), BCE_5143 (Acetyl-CoA acetyltransferase), BCE_5144 (3-hydroxyacyl-CoA dehydrogenase), BCE_4651 (Enoyl-CoA hydratase), and BCE_5474 (3-hydroxyacyl-CoA dehydrogenase) involved in the benzoate degradation pathway may play an important role in the biodegradation of MG by B. cereus. The results of this study not only provide a comprehensive view of proteomic changes in B. cereus upon MG loading but also shed light on the mechanism underlying MG biodegradation by B. cereus.

This is a preview of subscription content, access via your institution.

References

  1. Adav, S.S., Ng, C.S., and Sze, S.K. 2011. iTRAQ-based quantitative proteomic analysis of Thermobifida fusca reveals metabolic pathways of cellulose utilization. J. Proteomics 74, 2112–2122.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Amera, G.M., Khan, R.J., Pathak, A., Jha, R.K., Muthukumaran, J., and Singh, A.K. 2020. Computer aided ligand based screening for identification of promising molecules against enzymes involved in peptidoglycan biosynthetic pathway from Acinetobacter baumannii. Microb. Pathog. 147, 104205.

    CAS  PubMed  Article  Google Scholar 

  3. Cha, C.J., Doerge, D.R., and Cerniglia, C.E. 2001. Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 67, 4358–4360.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Chang, J.S. and Kuo, T.S. 2000. Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour. Technol. 75, 107–111.

    CAS  Article  Google Scholar 

  5. Chen, C.Y., Kuo, J.T., Cheng, C.Y., Huang, Y.T., Ho, I.H., and Chung, Y.C. 2009. Biological decolorization of dye solution containing malachite green by Pandoraea pulmonicola YC32 using a batch and continuous system. J. Hazard. Mater. 172, 1439–1445.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Chen, K.C., Wu, J.Y., Liou, D.J., and Hwang, S.C.J. 2003. Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol. 101, 57–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Culp, S.J. and Beland, F.A. 1996. Malachite green: A toxicological review. J. Am. Coll. Toxicol. 15, 219–238.

    Article  Google Scholar 

  8. Daneshvar, N., Ayazloo, M., Khataee, A.R., and Pourhassan, M. 2007a. Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresour. Technol. 98, 1176–1182.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. Daneshvar, N., Khataee, A.R., Rasoulifard, M.H., and Pourhassan, M. 2007b. Biodegradation of dye solution containing malachite green: optimization of effective parameters using taguchi method. J. Hazard. Mater. 143, 214–219.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. Debnam, P., Glanville, S., and Clark, A.G. 1993. Inhibition of glutathione s-transferases from rat liver by basic triphenylmethane dyes. Biochem. Pharmacol. 45, 1227–1233.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Deng, D., Guo, J., Zeng, G., and Sun, G. 2008. Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int. Biodeterior. Biodegradation 62, 263–269.

    CAS  Article  Google Scholar 

  12. Du, L.N., Zhao, M., Li, G., Xu, F.C., Chen, W.H., and Zhao, Y.H. 2013. Biodegradation of malachite green by Micrococcus sp. strain BD15: Biodegradation pathway and enzyme analysis. Int. Biodeterior. Biodegradation 78, 108–116.

    CAS  Article  Google Scholar 

  13. Fessard, V., Godard, T., Huet, S., Mourot, A., and Poul, J.M. 1999. Mutagenicity of malachite green and leucomalachite green in in vitro tests. J. Appl. Toxicol. 19, 421–430.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Ge, P., Ma, C., Wang, S., Gao, L., Li, X., Guo, G., Ma, W., and Yan, Y. 2012. Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal. Bioanal. Chem. 402, 1297–1313.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Gopinathan, R., Kanhere, J., and Banerjee, J. 2015. Effect of malachite green toxicity on non target soil organisms. Chemosphere 120, 637–644.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Henderson, A.L., Schmitt, T.C., Heinze, T.M., and Cerniglia, C.E. 1997. Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl. Environ. Microbiol. 63, 4099–4101.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Jia, D., Wang, B., Li, X., Peng, W., Zhou, J., Tan, H., Tang, J., Huang, Z., Tan, W., Gan, B., et al. 2017. Proteomic analysis revealed the fruiting-body protein profile of Auricularia polytricha. Curr. Microbiol. 74, 943–951.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Liu, S., Ma, Y., Zheng, Y., Zhao, W., Zhao, X., Luo, T., Zhang, J., and Yang, Z. 2020. Cold-stress response of probiotic Lactobacillus plantarum K25 by iTRAQ proteomic analysis. J. Microbiol. Biotechnol. 30, 187–195.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. Mattevi, A., de Kok, A., and Perham, R.N. 1992. The pyruvate dehydrogenase multienzyme complex. Curr. Opin. Struct. Biol. 2, 877–887.

    CAS  Article  Google Scholar 

  21. Mishra, P., Jain, A., Takabe, T., Tanaka, Y., Negi, M., Singh, N., Jain, N., Mishra, V., Maniraj, R., Krishnamurthy, S.L., et al. 2019. Heterologous expression of serine hydroxymethyltransferase-3 from rice confers tolerance to salinity stress in E. coli and arabidopsis. Front. Plant Sci. 10, 217.

    PubMed  PubMed Central  Article  Google Scholar 

  22. Moumeni, O. and Hamdaoui, O. 2012. Intensification of sonochemical degradation of malachite green by Bromide ions. Ultrason. Sonochem. 19, 404–409.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Murugesan, K., Yang, I.H., Kim, Y.M., Jeon, J.R., and Chang, Y.S. 2009. Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. Appl. Microbiol. Biotechnol. 82, 341–350.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Musgrave, W.B., Yi, H., Kline, D., Cameron, J.C., Wignes, J., Dey, S., Pakrasi, H.B., and Jez, J.M. 2013. Probing the origins of glutathione biosynthesis through biochemical analysis of glutamate-cysteine ligase and glutathione synthetase from a model photosynthetic prokaryote. Biochem. J. 450, 63–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Ranish, J.A., Yi, E.C., Leslie, D.M., Purvine, S.O., Goodlett, D.R., Eng, J., and Aebersold, R. 2003. The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33, 349–355.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Rasko, D.A., Ravel, J., Økstad, O.A., Helgason, E., Cer, R.Z., Jiang, L., Shores, K.A., Fouts, D.E., Tourasse, N.J., Angiuoli, S.V., et al. 2004. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res. 32, 977–988.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Rawat, D., Mishra, V., and Sharma, R.S. 2016. Detoxification of azo dyes in the context of environmental processes. Chemosphere 155, 591–605.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Reiter, L., Kolstø, A.B., and Piehler, A.P. 2011. Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle. J. Microbiol. Methods 86, 210–217.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. Saha, S., Wang, J.M., and Pal, A. 2012. Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Sep. Purif. Technol. 89, 147–159.

    CAS  Article  Google Scholar 

  30. Srivastava, S., Sinha, R., and Roy, D. 2004. Toxicological effects of malachite green. Aquat. Toxicol. 66, 319–329.

    CAS  PubMed  Article  Google Scholar 

  31. Sun, S., Xie, S., Chen, H., Cheng, Y., Shi, Y., Qin, X., Dai, S.Y., Zhang, X., and Yuan, J.S. 2016. Genomic and molecular mechanisms for efficient biodegradation of aromatic dye. J. Hazard. Mater. 302, 286–295.

    CAS  PubMed  Article  Google Scholar 

  32. Szewczyk, R., Soboń, A., Słaba, M., and Dlugoński, J. 2015. Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. J. Hazard. Mater. 291, 52–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Verma, P. and Madamwar, D. 2003. Decolourization of synthetic dyes by a newly isolated strain of Serratia marcescens. World J. Microbiol. Biotechnol. 19, 615–618.

    CAS  Article  Google Scholar 

  34. Wang, B., Chen, Z., Meng, X., Li, M., Yang, X., and Zhang, C. 2017. iTRAQ quantitative proteomic study in patients with thoracic ossification of the ligamentum flavum. Biochem. Biophys. Res. Commun. 487, 834–839.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Wanyonyi, W.C., Onyari, J.M., Shiundu, P.M., and Mulaa, F.J. 2017. Biodegradation and detoxification of malachite green dye using novel enzymes from Bacillus cereus strain KM201428: kinetic and metabolite analysis. Energy Procedia 119, 38–51.

    CAS  Article  Google Scholar 

  36. Xie, H., Yang, D.H., Yao, H., Bai, G., Zhang, Y.H., and Xiao, B.G. 2016. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress. Biochem. Biophys. Res. Commun. 469, 768–775.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Yang, X., Zhang, Z., Gu, T., Dong, M., Peng, Q., Bai, L., and Li, Y. 2016. Data for iTRAQ-based quantitative proteomics analysis of different biotypes in Echinochloa crus-galli with multi-herbicide treatment. Data Brief 9, 741–745.

    PubMed  PubMed Central  Article  Google Scholar 

  38. Yatome, C., Yamada, S., Ogawa, T., and Matsui, M. 1993. Degradation of crystal violet by Nocardia corallina. Appl. Microbiol. Biotechnol. 38, 565–569.

    CAS  Article  Google Scholar 

  39. Yi, W., Yang, K., Ye, J., Long, Y., Ke, J., and Ou, H. 2016. Triphenyltin degradation and proteomic response by an engineered Escherichia coli expressing cytochrome P450 enzyme. Ecotoxicol. Environ. Saf. 137, 29–34.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  40. Yildirim, N.C., Tanyol, M., Yildirim, N., Serdar, O., and Tatar, S. 2018. Biochemical responses of Gammarus pulex to malachite green solutions decolorized by Coriolus versicolor as a biosorbent under batch adsorption conditions optimized with response surface methodology. Ecotoxicol. Environ. Saf. 156, 41–47.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Yu, Z. and Wen, X. 2005. Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater. Int. Biodeterior. Biodegradation 56, 109–114.

    CAS  Article  Google Scholar 

  42. Zhang, Q., Xie, X., Liu, Y., Zheng, X., Wang, Y., Cong, J., Yu, C., Liu, N., Sand, W., and Liu, J. 2020. Co-metabolic degradation of refractory dye: a metagenomic and metaproteomic study. Environ. Pollut. 256, 113456.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. Zhang, C., Zhang, S., Diao, H., Zhao, H., Zhu, X., Lu, F., and Lu, Z. 2013. Purification and characterization of a temperature- and pH-stable laccase from the spores of Bacillus vallismortis fmb-103 and its application in the degradation of malachite green. J. Agric. Food Chem. 61, 5468–5473.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Zieske, L.R. 2006. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J. Exp. Bot. 57, 1501–1508.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the National Key Research and Development Program of China (2018YFD0800403), the National Natural Science Foundation of China (No. 21978287), and the Science and Technology Service Network Initiative Project of the Chinese Academy of Sciences (KFJ-STS-QYZX-112) for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Yu.

Additional information

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Lu, J., Zheng, J. et al. iTRAQ-facilitated proteomic analysis of Bacillus cereus via degradation of malachite green. J Microbiol. 59, 142–150 (2021). https://doi.org/10.1007/s12275-021-0441-0

Download citation

Keywords

  • iTRAQ
  • proteomic
  • Bacillus cereus
  • malachite green
  • biodegradation