Bacterial bug-out bags: outer membrane vesicles and their proteins and functions

Abstract

Among the major bacterial secretions, outer membrane vesicles (OMVs) are significant and highly functional. The proteins and other biomolecules identified within OMVs provide new insights into the possible functions of OMVs in bacteria. OMVs are rich in proteins, nucleic acids, toxins and virulence factors that play a critical role in bacteria-host interactions. In this review, we discuss some proteins with multifunctional features from bacterial OMVs and their role involving the mechanisms of bacterial survival and defence. Proteins with moonlighting activities in OMVs are discussed based on their functions in bacteria. OMVs harbour many other proteins that are important, such as proteins involved in virulence, defence, and competition. Overall, OMVs are a power-packed aid for bacteria, harbouring many defensive and moonlighting proteins and acting as a survival kit in case of an emergency or as a defence weapon. In summary, OMVs can be defined as bug-out bags for bacterial defence and, therefore, survival.

This is a preview of subscription content, log in to check access.

References

  1. Alaniz, R.C., Deatherage, B.L., Lara, J.C., and Cookson, B.T. 2007. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J. Immunol.179, 7692–7701.

    CAS  PubMed  Google Scholar 

  2. Allocati, N., Masulli, M., Di Ilio, C., and De Laurenzi, V. 2015. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis.6, e1609.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Amblee, V. and Jeffery, C.J. 2015. Physical features of intracellular proteins that moonlight on the cell surface. PLoS One10, e0130575.

    PubMed  PubMed Central  Google Scholar 

  4. Asally, M., Kittisopikul, M., Rué, P., Du, Y., Hu, Z., Cagatay, T., Robinson, A.B., Lu, H., Garcia-Ojalvo, J., and Süel, G.M. 2012. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc. Natl. Acad. Sci. USA109, 18891–18896.

    CAS  PubMed  Google Scholar 

  5. Bachler, C., Schneider, P., Bahler, P., Lustig, A., and Erni, B. 2005. Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR. EMBO J.24, 283–293.

    PubMed  Google Scholar 

  6. Bai, J., Kim, S.I., Ryu, S., and Yoon, H. 2014. Identification and characterization of outer membrane vesicle-associated proteins in Salmonella enterica serovar typhimurium. Infect. Immun.82, 4001–4010.

    PubMed  PubMed Central  Google Scholar 

  7. Banerjee, S., Nandyala, A.K., Raviprasad, P., Ahmed, N., and Hasnain, S.E. 2007. Iron-dependent RNA-binding activity of Mycobacte-rium tuberculosis aconitase. J. Bacteriol.189, 4046–4052.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bao, S., Guo, X., Yu, S., Ding, J., Tan, L., Zhang, F., Sun, Y., Qiu, X., Chen, G., and Ding, C. 2014. Mycoplasma synoviae enolase is a plasminogen/fibronectin binding protein. BMC Vet. Res.10, 223.

    PubMed  PubMed Central  Google Scholar 

  9. Barbosa, M.S., Báo, S.N., Andreotti, P.F., de Faria, F.P., Felipe, M.S.S., dos Santos Feitosa, L., Mendes-Giannini, M.J., and Soares, C.M. 2006. Glyceraldehyde-3-phosphate dehydrogenase of Paracocci-dioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect. Immun.74, 382–389.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Biagini, M., Garibaldi, M., Aprea, S., Pezzicoli, A., Doro, F., Beche-relli, M., Taddei, A.R., Tani, C., Tavarini, S., Mora, M.,et al. 2015. The human pathogen Streptococcus pyogenes releases lipoproteins as lipoprotein-rich membrane vesicles. Mol. Cell. Proteomics14, 2138–2149.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bitto, N.J., Chapman, R., Pidot, S., Costin, A., Lo, C., Choi, J., D’ Cruze, T., Reynolds, E.C., Dashper, S.G., Turnbull, L.,et al. 2017. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci. Rep.7, 7072.

    PubMed  PubMed Central  Google Scholar 

  12. Bonnington, K.E. and Kuehn, M.J. 2014. Protein selection and export via outer membrane vesicles. Biochim. Biophys. Acta1843, 1612–1619.

    CAS  PubMed  Google Scholar 

  13. Boone, T.J. and Tyrrell, G.J. 2012. Identification of the actin and plasminogen binding regions of group B streptococcal phos-phoglycerate kinase. J. Biol. Chem.287, 29035–29044.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Carneiro, C.R., Postol, E., Nomizo, R., Reis, L.F., and Brentani, R.R. 2004. Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus. Microbes Infect.6, 604–608.

    CAS  PubMed  Google Scholar 

  15. Casjens, S. 2003. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol.49, 277–300.

    CAS  PubMed  Google Scholar 

  16. Charlier, D., Kholti, A., Huysveld, N., Gigot, D., Maes, D., Thia-Toong, T.L., and Glansdorff, N. 2000. Mutational analysis of Escherichia coli PepA, a multifunctional DNA-binding amino-peptidase. J. Mol. Biol.302, 409–424.

    Google Scholar 

  17. Chatterjee, D. and Chaudhuri, K. 2011. Association of cholera toxin with Vibrio cholerae outer membrane vesicles which are internalized by human intestinal epithelial cells. FEBS Lett.585, 1357–1362.

    CAS  PubMed  Google Scholar 

  18. Chen, M.H., Takeda, S., Yamada, H., Ishii, Y., Yamashino, T., and Mizuno, T. 2001. Characterization of the Rcs→YojN→RcsB phosphorelay signaling pathway involved in capsular synthesis in Escherichia coli. Biosci. Biotechnol. Biochem.65, 2364–2367.

    CAS  PubMed  Google Scholar 

  19. Chen, C., Zabad, S., Liu, H., Wang, W., and Jeffery, C. 2018. Moon-Prot 2.0: an expansion and update of the moonlighting proteins database. Nucleic Acids Res.46, D640–D644.

    CAS  PubMed  Google Scholar 

  20. Choi, C.W., Park, E.C., Yun, S.H., Lee, S.Y., Lee, Y.G., Hong, Y., Park, K.R., Kim, S.H., Kim, G.H., and Kim, S.I. 2014. Proteomic characterization of the outer membrane vesicle of Pseudomonas putida KT2440. J. Proteome Res.13, 4298–4309.

    CAS  PubMed  Google Scholar 

  21. Chu, C.H., Liu, M.H., Chen, P.C., Lin, M.H., Li, Y.C., Hsiao, C.D., and Sun, Y.J. 2012. Structures of Helicobacter pylori uridylate kinase: insight into release of the product UDP. Acta Crystallogr. D Biol. Crystallogr.68, 773–783.

    CAS  PubMed  Google Scholar 

  22. Claverys, J.P. and Håvarstein, L.S. 2007. Cannibalism and fratricide: mechanisms and raisons d’être. Nature Rev. Microbiol.5, 219–229.

    CAS  Google Scholar 

  23. Corbett, D. and Roberts, I.S. 2008. Capsular polysaccharides in Esche-richia coli. Adv. Appl. Microbiol.65, 1–26.

    CAS  PubMed  Google Scholar 

  24. Dallo, S.F., Kannan, T.R., Blaylock, M.W., and Baseman, J.B. 2002. Elongation factor Tu and E1 ß subunit of pyruvate dehydrogen-ase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol. Microbiol.46, 1041–1051.

    CAS  PubMed  Google Scholar 

  25. Daniely, D., Portnoi, M., Shagan, M., Porgador, A., Givon-Lavi, N., Ling, E., Dagan, R., and Mizrachi Nebenzahl, Y. 2006. Pneumo-coccal 6-phosphogluconate-dehydrogenase, a putative adhesin, induces protective immune response in mice. Clin. Exp. Immunol.144, 254–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Das, T., Sehar, S., and Manefield, M. 2013. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ. Microbiol. Rep.5, 778–786.

    CAS  PubMed  Google Scholar 

  27. Dashper, S.G., Hendtlass, A., Slakeski, N., Jackson, C., Cross, K.J., Brownfield, L., Hamilton, R., Barr, I., and Reynolds, E.C. 2000. Characterization of a novel outer membrane hemin-binding protein of Porphyromonas gingivalis. J. Bacteriol.182, 6456–6462.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dillingham, M.S. and Kowalczykowski, S.C. 2008. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev.72, 642–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dorward, D.W. and Garon, C.F. 1990. DNA is packaged within membrane-derived vesicles of Gram-negative but not Grampositive bacteria. Appl. Environ. Microbiol.56, 1960–1962.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dufour, D., Cordova, M., Cvitkovitch, D.G., and Lévesque, C.M. 2011. Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J. Bacteriol.193, 6552–6559.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dutta, S., Iida, K., Takade, A., Meno, Y., Nair, G.B., and Yoshida, S. 2004. Release of Shiga toxin by membrane vesicles in Shigella dysenteriae serotype 1 strains and in vitro effects of antimicrobials on toxin production and release. Microbiol. Immunol.48, 965–969.

    CAS  PubMed  Google Scholar 

  32. Dwyer, D.J., Camacho, D.M., Kohanski, M.A., Callura, J.M., and Collins, J.J. 2012. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell46, 561–572.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Eddy, J.L., Gielda, L.M., Caulfield, A.J., Rangel, S.M., and Lathem, W.W. 2014. Production of outer membrane vesicles by the plague pathogen Yersinia pestis. PLoS One9, e107002.

    PubMed  PubMed Central  Google Scholar 

  34. Ellis, T.N. and Kuehn, M.J. 2010. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev.74, 81–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ellis, T.N., Leiman, S.A., and Kuehn, M.J. 2010. Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect. Immun.78, 3822–3831.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Epstein, A.K., Pokroy, B., Seminara, A., and Aizenberg, J. 2011. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proc. Natl. Acad. Sci. USA108, 995–1000.

    CAS  PubMed  Google Scholar 

  37. Evans, M.R., Fink, R.C., Vazquez-Torres, A., Porwollik, S., Jones-Carson, J., McClelland, M., and Hassan, H.M. 2011. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiol.11, 58.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fedorova, K., Kayumov, A., Woyda, K., Ilinskaja, O., and Forchhammer, K. 2013. Transcription factor TnrA inhibits the bio-synthetic activity of glutamine synthetase in Bacillus subtilis. FEBS Lett.587, 1293–1298.

    CAS  PubMed  Google Scholar 

  39. Freedman, R. 1978. Moonlighting molecules. New Sci.79, 560–561.

    Google Scholar 

  40. Furman, R., Danhart, E.M., NandyMazumdar, M., Yuan, C., Foster, M.P., and Artsimovitch, I. 2015. pH dependence of the stress regulator DksA. PLoS One10, e0120746.

    PubMed  PubMed Central  Google Scholar 

  41. Fushinobu, S., Nishimasu, H., Hattori, D., Song, H.J., and Wakagi, T. 2011. Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase. Nature478, 538–541.

    CAS  PubMed  Google Scholar 

  42. Ge, J., Catt, D.M., and Gregory, R.L. 2004. Streptococcus mutans surface a-enolase binds salivary mucin MG2 and human plas-minogen. Infect. Immun.72, 6748–6752.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gotfredsen, M. and Gerdes, K. 1998. The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol. Microbiol.29, 1065–1076.

    CAS  PubMed  Google Scholar 

  44. Gottesman, S., Trisler, P., and Torres-Cabassa, A. 1985. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J. Bacteriol.162, 1111–1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gunka, K., Newman, J.A., Commichau, F.M., Herzberg, C., Rodri-gues, C., Hewitt, L., Lewis, R.J., and Stulke, J. 2010. Functional dissection of a trigger enzyme: Mutations of the Bacillus subtilis glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties. J. Mol. Biol.400, 815–827.

    CAS  PubMed  Google Scholar 

  46. Hajishengallis, G., Darveau, R.P., and Curtis, M.A. 2012. The keystone-pathogen hypothesis. Nat. Rev. Microbiol.10, 717–725.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hardy, C.D. and Cozzarelli, N.R. 2005. A genetic selection for su-percoiling mutants of Escherichia coli reveals proteins implicated in chromosome structure. Mol. Microbiol.57, 1636–1652.

    CAS  PubMed  Google Scholar 

  48. Hazan, R. and Engelberg-Kulka, H. 2004. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol. Genet. Genomics272, 227–234.

    CAS  PubMed  Google Scholar 

  49. Hernández, S., Ferragut, G., Amela, I., Perez-Pons, J., Piñol, J., Mozo-Villarias, A., Cedano, J., and Querol, E. 2014. MultitaskProtDB: a database of multitasking proteins. Nucleic Acids Res.42, D517–D520.

    PubMed  Google Scholar 

  50. Hickey, T.B., Ziltener, H.J., Speert, D.P., and Stokes, R.W. 2010. My-cobacterium tuberculosis employs Cpn60.2 as an adhesin that binds CD43 on the macrophage surface. Cell. Microbiol.12, 1634–1647.

    CAS  PubMed  Google Scholar 

  51. Hirakawa, H., Nishino, K., Hirata, T., and Yamaguchi, A. 2003. Comprehensive studies of drug resistance mediated by overexpre-ssion of response regulators of two-component signal transduc-tion systems in Escherichia coli. J. Bacteriol.185, 1851–1856.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Holtje, J.V. 1995. From growth to autolysis: the murein hydrolases in Escherichia coli. Arch. Microbiol.164, 243–254.

    CAS  PubMed  Google Scholar 

  53. Holzer, H., Schutt, H., Masek, Z., and Mecke, D. 1968. Regulation of two forms of glutamine synthetase in Escherichia coli by the ammonia content of the growth medium. Proc. Natl. Acad. Sci. USA60, 721–724.

    CAS  PubMed  Google Scholar 

  54. Horstman, A.L. and Kuehn, M.J. 2000. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J. Biol. Chem.275, 12489–12496.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang, Y.H., Ferrières, L., and Clarke, D.J. 2006. The role of the Rcs phosphorelay in Enterobacteriaceae. Res. Microbiol.157, 206–212.

    CAS  PubMed  Google Scholar 

  56. Huberts, D.H. and van der Klei, I.J. 2010. Moonlighting proteins: an intriguing mode of multitasking. Biochim. Biophys. Acta1803, 520–525.

    CAS  PubMed  Google Scholar 

  57. Huntley, J.F., Conley, P.G., Hagman, K.E., and Norgard, M.V. 2007. Characterization of Francisella tularensis outer membrane proteins. J. Bacteriol.189, 561–574.

    CAS  PubMed  Google Scholar 

  58. James, E.S. and Cronan, J.E. 2004. Expression of two Escherichia coli acetyl-CoA carboxylase subunits is autoregulated. J. Biol. Chem.279, 2520–2527.

    CAS  PubMed  Google Scholar 

  59. Jan, A.T. 2017. Outer membrane vesicles (OMVs) of Gram-negative bacteria: a perspective update. Front. Microbiol.8, 1053.

    PubMed  PubMed Central  Google Scholar 

  60. Jeffery, C.J. 2014. An introduction to protein moonlighting. Biochem. Soc. Trans.42, 1679–1683.

    CAS  PubMed  Google Scholar 

  61. Jiang, F., An, C., Bao, Y., Zhao, X., Jernigan, R.L., Lithio, A., Nettleton, D., Li, L., Wurtele, E.S., Nolan, L.K.,et al. 2015. ArcA controls metabolism, chemotaxis, and motility contributing to the patho-genicity of avian pathogenic Escherichia coli. Infect. Immun.83, 3545–3554.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jin, H., Song, Y.P., Boel, G., Kochar, J., and Pancholi, V. 2005. Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharyngeal cell and mediates bacterial adherence to host cells. J. Mol. Biol.350, 27–41.

    CAS  PubMed  Google Scholar 

  63. Jones, P.G., Mitta, M., Kim, Y., Jiang, W., and Inouye, M. 1996. Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc. Natl. Acad. Sci. USA93, 76–80.

    CAS  PubMed  Google Scholar 

  64. Josephson, B.L. and Fraenkel, D.G. 1974. Sugar metabolism in trans-ketolase mutants of Escherichia coli. J. Bacteriol.118, 1082–1089.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kadurugamuwa, J.L. and Beveridge, T.J. 1995. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J. Bacteriol.177, 3998–4008.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kalra, H., Simpson, R.J., Ji, H., Aikawa, E., Altevogt, P., Askenase, P., Bond, V.C., Borràs, F.E., Breakefield, X., Budnik, V.,et al. 2012. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol.10, e1001450.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kang, Y., Goo, E., Kim, J., and Hwang, I. 2017. Critical role of quorum sensing-dependent glutamate metabolism in homeostatic osmolality and outer membrane vesiculation in Burkholderia glumae. Sci. Rep.7, 44195.

    PubMed  PubMed Central  Google Scholar 

  68. Kato, S., Kowashi, Y., and Demuth, D.R. 2002. Outer membranelike vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb. Pathog.32, 1–13.

    CAS  PubMed  Google Scholar 

  69. Kesimer, M., Kiliç, N., Mehrotra, R., Thornton, D.J., and Sheehan, J.K. 2009. Identification of salivary mucin MUC7 binding proteins from Streptococcus gordonii. BMC Microbiol.9, 163.

    PubMed  PubMed Central  Google Scholar 

  70. Kesty, N.C., Mason, K.M., Reedy, M., Miller, S.E., and Kuehn, M.J. 2004. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J.23, 4538–4549.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kharina, A., Podolich, O., Faidiuk, I., Zaika, S., Haidak, A., Kukha-renko, O., Zaets, I., Tovkach, F., Reva, O., Kremenskoy, M.,et al. 2015. Temperate bacteriophages collected by outer membrane vesicles in Komagataeibacter intermedius. J. Basic Microbiol.55, 509–513.

    CAS  PubMed  Google Scholar 

  72. Kim, D.K., Lee, J., Kim, S.R., Choi, D.S., Yoon, Y.J., Kim, J.H., Go, G., Nhung, D., Hong, K., Jang, S.C.,et al. 2015. EVpedia: a community web portal for extracellular vesicles research. Bioinfor-matics31, 933–939.

    CAS  Google Scholar 

  73. Kim, J.S., Song, S., Lee, M., Lee, S., Lee, K., and Ha, N.C. 2016. Crystal structure of a soluble fragment of the membrane fusion protein HlyD in a type I secretion system of Gram-negative bacteria. Structure24, 477–485.

    CAS  PubMed  Google Scholar 

  74. Kinhikar, A.G., Vargas, D., Li, H., Mahaffey, S.B., Hinds, L., Belisle, J.T., and Laal, S. 2006. Mycobacterium tuberculosis malate syn-thase is a laminin-binding adhesin. Mol. Microbiol.60, 999–1013.

    CAS  PubMed  Google Scholar 

  75. Kinnby, B., Booth, N.A., and Svensäter, G. 2008. Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions. Microbiology154, 924–931.

    CAS  PubMed  Google Scholar 

  76. Kitahara, K. and Suzuki, T. 2009. The ordered transcription of RNA domains is not essential for ribosome biogenesis in Escherichia coli. Mol. Cell34, 760–766.

    CAS  PubMed  Google Scholar 

  77. Kuehn, M.J. and Kesty, N.C. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev.19, 2645–2655.

    CAS  PubMed  Google Scholar 

  78. Kuo, C.J., Bell, H., Hsieh, C.L., Ptak, C.P., and Chang, Y.F. 2012. Novel mycobacteria antigen 85 complex binding motif on fibron-ectin. J. Biol. Chem.287, 1892–1902.

    CAS  PubMed  Google Scholar 

  79. Kupper, M., Gupta, S.K., Feldhaar, H., and Gross, R. 2014. Versatile roles of the chaperonin GroEL in microorganism-insect interactions. FEMS Microbiol. Lett.353, 1–10.

    CAS  PubMed  Google Scholar 

  80. Le, H.T., Gautier, V., Kthiri, F., Malki, A., Messaoudi, N., Mihoub, M., Landoulsi, A., An, Y.J., Cha, S.S., and Richarme, G. 2012. YajL, prokaryotic homolog of parkinsonism-associated protein DJ-1, functions as a covalent chaperone for thiol proteome. J. Biol. Chem.287, 5861–5870.

    CAS  PubMed  Google Scholar 

  81. Lee, E.Y., Choi, D.S., Kim, K.P., and Gho, Y.S. 2008. Proteomics in Gram-negative bacterial outer membrane vesicles. Mass Spectrom. Rev.27, 535–555.

    CAS  PubMed  Google Scholar 

  82. Lewis, K. 2000. Programmed death in bacteria. Microbiol. Mol. Biol. Rev.64, 503–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, S.J. and Cronan, J.E.Jr. 1993. Growth rate regulation of Escheri-chia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis. J. Bacteriol.175, 332–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, W., Rao, D.K., and Kaur, P. 2013. Dual role of the metallopro-tease FtsH in biogenesis of the DrrAB drug transporter. J. Biol. Chem.288, 11854–11864.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lim, S. and Yoon, H. 2015. Roles of outer membrane vesicles (OMVs) in bacterial virulence. J. Bacteriol. Virol.45, 1–10.

    CAS  Google Scholar 

  86. Lin, H., Ye, C., Chen, S., Zhang, S., and Yu, X. 2017. Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts. Environ. Pollut.230, 242–249.

    CAS  PubMed  Google Scholar 

  87. Loeb, M.R. and Kilner, J. 1978. Release of a special fraction of the outer membrane from both growing and phage T4-infected Esche-richia coli B. Biochim. Biophys. Acta514, 117–127.

    CAS  PubMed  Google Scholar 

  88. MacDonald, I.A. and Kuehn, M.J. 2013. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J. Bac-teriol.195, 2971–2981.

    CAS  Google Scholar 

  89. Manning, A.J. and Kuehn, M.J. 2011. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol.11, 258.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Marcos, C.M., de Oliveira, H.C., da Silva Jde, F., Assato, P.A., Fusco-Almeida, A.M., and Mendes-Giannini, M.J. 2014. The multi-faceted roles of metabolic enzymes in the Paracoccidioides species complex. Front. Microbiol.5, 719.

    PubMed  PubMed Central  Google Scholar 

  91. Maredia, R., Devineni, N., Lentz, P., Dallo, S.F., Yu, J., Guentzel, N., Chambers, J., Arulanandam, B., Haskins, W.E., and Weitao, T. 2012. Vesiculation from Pseudomonas aeruginosa under SOS. Sci. World J.2012, 402919.

    Google Scholar 

  92. Mashburn-Warren, L., Howe, J., Brandenburg, K., and Whiteley, M. 2009. Structural requirements of the Pseudomonas quinolone signal for membrane vesicle stimulation. J. Bacteriol.191, 3411–3414.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. McBroom, A.J. and Kuehn, M.J. 2007. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol.63, 545–558.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. McCaig, W.D., Koller, A., and Thanassi, D.G. 2013. Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. J. Bacteriol.195, 1120–1132.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Melton-Celsa, A.R. 2014. Shiga toxin (Stx) classification, structure, and function. Microbiol. Spectr.2, EHEC-0024-2013.

  96. Menestrina, G., Moser, C., Pellet, S., and Welch, R. 1994. Pore-formation by Escherichia coli hemolysin (HlyA) and other members of the RTX toxins family. Toxicology87, 249–267.

    CAS  PubMed  Google Scholar 

  97. Metzstein, M.M., Stanfield, G.M., and Horvitz, H.R. 1998. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet.14, 410–416.

    CAS  PubMed  Google Scholar 

  98. Modun, B. and Williams, P. 1999. The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate de-hydrogenase. Infect. Immun.67, 1086–1092.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Muro-Pastor, A.M. and Maloy, S. 1995. Proline dehydrogenase activity of the transcriptional repressor PutA is required for induction of the put operon by proline. J. Biol. Chem.270, 9819–9827.

    CAS  PubMed  Google Scholar 

  100. Olsen, I. and Amano, A. 2015. Outer membrane vesicles-offensive weapons or good Samaritans? J. Oral Microbiol.7, 27468.

    PubMed  Google Scholar 

  101. Park, D.M., Akhtar, M.S., Ansari, A.Z., Landick, R., and Kiley, P.J. 2013. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet.9, e1003839.

    PubMed  PubMed Central  Google Scholar 

  102. Park, A.J., Murphy, K., Surette, M.D., Bandoro, C., Krieger, J.R., Taylor, P., and Khursigara, C.M. 2015. Tracking the dynamic relationship between cellular systems and extracellular subpro-teomes in Pseudomonas aeruginosa biofilms. J. Proteome Res.14, 4524–4537.

    CAS  PubMed  Google Scholar 

  103. Peist, R., Koch, A., Bolek, P., Sewitz, S., Kolbus, T., and Boos, W. 1997. Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity. J. Bacteriol.179, 7679–7686.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Perego, M. and Brannigan, J.A. 2001. Pentapeptide regulation of aspartyl-phosphate phosphatases. Peptides22, 1541–1547.

    CAS  PubMed  Google Scholar 

  105. Pierson, T., Matrakas, D., Taylor, Y.U., Manyam, G., Morozov, V.N., Zhou, W., and, van Hoek, M.L. 2011. Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J. Proteome Res.10, 954–967.

    CAS  PubMed  Google Scholar 

  106. Pletzer, D., Wolfmeier, H., Bains, M., and Hancock, R.E.W. 2017. Synthetic peptides to target stringent response-controlled virulence in a Pseudomonas aeruginosa murine cutaneous infection model. Front. Microbiol.8, 1867.

    PubMed  PubMed Central  Google Scholar 

  107. Qin, Z., Ou, Y., Yang, L., Zhu, Y., Tolker-Nielsen, T., Molin, S., and Qu, D. 2007. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology153, 2083–2092.

    CAS  PubMed  Google Scholar 

  108. Raffaelli, N., Lorenzi, T., Mariani, P.L., Emanuelli, M., Amici, A., Ruggieri, S., and Magni, G. 1999. The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyl-transferase activity. J. Bacteriol.181, 5509–5511.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Raskin, D.M., Judson, N., and Mekalanos, J.J. 2007. Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae. Proc. Natl. Acad. Sci. USA104, 4636–4641.

    CAS  PubMed  Google Scholar 

  110. Resch, A., Vecerek, B., Palavra, K., and Bläsi, U. 2010. Requirement of the CsdA DEAD-box helicase for low temperature riboregu-lation of rpoS mRNA. RNA Biol.7, 796–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Reyes-Robles, T., Dillard, R.S., Cairns, L.S., Silva-Valenzuela, C.A., Housman, M., Ali, A., Wright, E.R., and Camilli, A. 2018. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J. Bacteriol.200, e00792–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ribet, D. and Cossart, P. 2015. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect.17, 173–183.

    CAS  PubMed  Google Scholar 

  113. Rohmer, L., Hocquet, D., and Miller, S.I. 2011. Are pathogenic bacteria just looking for food? Metabolism and microbial patho-genesis. Trends Microbiol.19, 341–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Romanovskaia, A.A. and Nikandrov, V.N. 2007. [Effects of plasmi-nogen, streptokinase and their equimolar complexes with pyruvate kinase on the human neuroblastoma IMR-32 cells]. Tsitologiia49, 656–663.

    CAS  PubMed  Google Scholar 

  115. Romeo, T., Gong, M., Liu, M.Y., and Brun-Zinkernagel, A.M. 1993. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol.175, 4744–4755.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Schuch, R. and Maurelli, A.T. 1999. The Mxi-Spa type III secretory pathway of Shigella flexneri requires an outer membrane lip-oprotein, MxiM, for invasin translocation. Infect. Immun.67, 1982–1991.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schwechheimer, C. and Kuehn, M.J. 2013. Synthetic effect between envelope stress and lack of outer membrane vesicle production in Escherichia coli. J. Bacteriol.195, 4161–4173.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sengupta, S., Ghosh, S., and Nagaraja, V. 2008. Moonlighting function of glutamate racemase from Mycobacterium tuberculosis: racemization and DNA gyrase inhibition are two independent activities of the enzyme. Microbiology154, 2796–2803.

    CAS  PubMed  Google Scholar 

  119. Shams, F., Oldfield, N.J., Lai, S.K., Tunio, S.A., Wooldridge, K.G., and Turner, D.P. 2016. Fructose-1,6-bisphosphate aldolase of Neisseria meningitidis binds human plasminogen via its C-terminal lysine residue. MicrobiologyOpen5, 340–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sharpe, S.W., Kuehn, M.J., and Mason, K.M. 2011. Elicitation of epithelial cell-derived immune effectors by outer membrane vesicles of nontypeable Haemophilus influenzae. Infect. Immun.79, 4361–4369.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Shendelman, S., Jonason, A., Martinat, C., Leete, T., and Abeliovich, A. 2004. DJ-1 is a redox-dependent molecular chaperone that inhibits a-synuclein aggregate formation. PLoS Biol.2, e362.

    PubMed  PubMed Central  Google Scholar 

  122. Simmons, L.A., Foti, J.J., Cohen, S.E., and Walker, G.C. 2008. The SOS regulatory network. EcoSal Plus2008, 10.1128/ecosalplus.-5.4.3.

  123. Snyder, L. 1995. Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents? Mol. Microbiol.15, 415–420.

    CAS  PubMed  Google Scholar 

  124. Soler, N., Krupovic, M., Marguet, E., and Forterre, P. 2015. Membrane vesicles in natural environments: a major challenge in viral ecology. ISME J.9, 793–796.

    CAS  PubMed  Google Scholar 

  125. Stout, V., Torres-Cabassa, A., Maurizi, M.R., Gutnick, D., and Got-tesman, S. 1991. RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J. Bacteriol.173, 1738–1747.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Tame, J.R. 2011. Autotransporter protein secretion. Biomol. Concepts2, 525–536.

    CAS  PubMed  Google Scholar 

  127. Tanous, C., Soutourina, O., Raynal, B., Hullo, M.F., Mervelet, P., Gilles, A.M., Noirot, P., Danchin, A., England, P., and Martin-Verstraete, I. 2008. The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis. J. Biol. Chem.283, 35551–35560.

    CAS  PubMed  Google Scholar 

  128. Toledo, A., Coleman, J., Kuhlow, C., Crowley, J., and Benach, J. 2012. The enolase of Borrelia burgdorferi is a plasminogen receptor released in outer membrane vesicles. Infect. Immun.80, 359–368.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tunio, S.A., Oldfield, N.J., Ala’Aldeen, D.A., Wooldridge, K.G., and Turner, D.P. 2010a. The role of glyceraldehyde 3-phosphate de-hydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells. BMC Microbiol.10, 280.

    PubMed  PubMed Central  Google Scholar 

  130. Tunio, S.A., Oldfield, N.J., Berry, A., Ala’Aldeen, D.A., Wooldridge, K.G., and Turner, D.P. 2010b. The moonlighting protein fruc-tose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Mol. Microbiol.76, 605–615.

    CAS  PubMed  Google Scholar 

  131. Turner, L., Bitto, N.J., Steer, D.L., Lo, C., D’ Costa, K., Ramm, G., Shambrook, M., Hill, A.F., Ferrero, R.L., and Kaparakis-Liaskos, M. 2018. Helicobacter pylori outer membrane vesicle size determines their mechanisms of host cell entry and protein content. Front. Immunol.9, 1466.

    PubMed  PubMed Central  Google Scholar 

  132. Turner, R.J., Bonner, E.R., Grabner, G.K., and Switzer, R.L. 1998. Purification and characterization of Bacillus subtilis PyrR, a bi-functional pyr mRNA-binding attenuation protein/uracil phos-phoribosyltransferase. J. Biol. Chem.273, 5932–5938.

    CAS  PubMed  Google Scholar 

  133. Vartikar, J.V. and Draper, D.E. 1989. S4-16 S ribosomal RNA complex. Binding constant measurements and specific recognition of a 460-nucleotide region. J. Mol. Biol.209, 221–234.

    CAS  PubMed  Google Scholar 

  134. Veith, P.D., Luong, C., Tan, K.H., Dashper, S.G., and Reynolds, E.C. 2018. Outer membrane vesicle proteome of Porphyromonas gin-givalis is differentially modulated relative to the outer membrane in response to heme availability. J. Proteome Res.17, 2377–2389.

    CAS  PubMed  Google Scholar 

  135. Vollmer, W., Joris, B., Charlier, P., and Foster, S. 2008. Bacterial pep-tidoglycan (murein) hydrolases. FEMS Microbiol. Rev.32, 259–286.

    CAS  Google Scholar 

  136. Walter, S. 2002. Structure and function of the GroE chaperone. Cell. Mol. Life Sci.59, 1589–1597.

    CAS  PubMed  Google Scholar 

  137. Wampler, J.L., Kim, K.P., Jaradat, Z., and Bhunia, A.K. 2004. Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect. Immun.72, 931–936.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Weilbacher, T., Suzuki, K., Dubey, A.K., Wang, X., Gudapaty, S., Morozov, I., Baker, C.S., Georgellis, D., Babitzke, P., and Romeo, T. 2003. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol. Microbiol.48, 657–670.

    CAS  PubMed  Google Scholar 

  139. Werkman, C.H. 1939. Bacterial dissimilation of carbohydrates. Bac-teriol. Rev.3, 187–227.

    CAS  Google Scholar 

  140. Whitworth, D.E. and Morgan, B.H. 2015. Synergism between bacterial GAPDH and OMVs: disparate mechanisms but co-operative action. Front. Microbiol.6, 1231.

    PubMed  PubMed Central  Google Scholar 

  141. Widjaja, M., Harvey, K.L., Hagemann, L., Berry, I.J., Jarocki, V.M., Raymond, B.B.A., Tacchi, J.L., Gründel, A., Steele, J.R., Padula, M.P.,et al. 2017. Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci. Rep.7, 11227.

    PubMed  PubMed Central  Google Scholar 

  142. Woolwine, S.C. and Wozniak, D.J. 1999. Identification of an Esche-richia coli pepA homolog and its involvement in suppression of the algB phenotype in mucoid Pseudomonas aeruginosa. J. Bac-teriol.181, 107–116.

    CAS  Google Scholar 

  143. Zakharzhevskaya, N.B., Vanyushkina, A.A., Altukhov, I.A., Shavarda, A.L., Butenko, I.O., Rakitina, D.V., Nikitina, A.S., Manolov, A.I., Egorova, A.N., Kulikov, E.E.,et al. 2017. Outer membrane vesicles secreted by pathogenic and nonpathogenic Bacteroides fra-gilis represent different metabolic activities. Sci. Rep.7, 5008.

    PubMed  PubMed Central  Google Scholar 

  144. Zimmermann, R.A., Garvin, R.T., and Gorini, L. 1971. Alteration of a 30S ribosomal protein accompanying the ram mutation in Escherichia coli. Proc. Natl. Acad. Sci. USA68, 2263–2267.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kesavan Dineshkumar or Huaxi Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dineshkumar, K., Aparna, V., Wu, L. et al. Bacterial bug-out bags: outer membrane vesicles and their proteins and functions. J Microbiol. 58, 531–542 (2020). https://doi.org/10.1007/s12275-020-0026-3

Download citation

Keywords

  • bacterial defence mechanism
  • bacterial survival
  • moonlighting proteins
  • outer membrane vesicles
  • SOS mechanism