Skip to main content
Log in

Growth and differentiation properties of pikromycin-producing Streptomyces venezuelae ATCC15439

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Streptomycetes naturally produce a variety of secondary metabolites, in the process of physiological differentiation. Streptomyces venezuelae differentiates into spores in liquid media, serving as a good model system for differentiation and a host for exogenous gene expression. Here, we report the growth and differentiation properties of S. venezuelae ATCC-15439 in liquid medium, which produces pikromycin, along with genome-wide gene expression profile. Comparison of growth properties on two media (SPA, MYM) revealed that the stationary phase cell viability rapidly decreased in SPA. Submerged spores showed partial resistance to lysozyme and heat, similar to what has been observed for better-characterized S. venezuelae ATCC10712, a chloramphenicol producer. TEM revealed that the differentiated cells in the submerged culture showed larger cell size, thinner cell wall than the aerial spores. We analyzed transcriptome profiles of cells grown in liquid MYM at various growth phases. During transition and/or stationary phases, many differentiationrelated genes were well expressed as judged by RNA level, except some genes forming hydrophobic coats in aerial mycelium. Since submerged spores showed thin cell wall and partial resistance to stresses, we examined cellular expression of MreB protein, an actin-like protein known to be required for spore wall synthesis in Streptomycetes. In contrast to aerial spores where MreB was localized in septa and spore cell wall, submerged spores showed no detectable signal. Therefore, even though the mreB transcripts are abundant in liquid medium, its protein level and/or its interaction with spore wall synthetic complex appear impaired, causing thinner- walled and less sturdy spores in liquid culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bibb, M.J., Domonkos, A., Chandra, G., and Buttner, M.J. 2012. Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by σBldN and a cognate anti-sigma factor, RsbN. Mol. Microbiol. 84, 1033–1049.

    Article  CAS  PubMed  Google Scholar 

  • Davies, J. 2013. Specialized microbial metabolites: functions and origins. J. Antibiot. 66, 361–364.

    Article  CAS  PubMed  Google Scholar 

  • Daza, A., Martin, J.F., Dominguez, A., and Gil, J.A. 1989. Sporulation of several species of Streptomyces in submerged cultures after nutritional downshift. Microbiology 135, 2483–2491.

    Article  CAS  Google Scholar 

  • Donczew, M., Mackiewicz, P., Wrobel, A., Flardh, K., Zakrzewska-Czerwinska, J., and Jakimowicz, D. 2016. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation. Open Biol. 6, 150263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doull, J.L., Singh, A.K., Hoare, M., and Ayer, S.W. 1993. Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J. Antibiot. 46, 869–871.

    Article  CAS  PubMed  Google Scholar 

  • Elliot, M.A., Karoonuthaisiri, N., Huang, J., Bibb, M.J., Cohen, S.N., Kao, C.M., and Buttner, M.J. 2003. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 17, 1727–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flärdh, K. and Buttner, M.J. 2009. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 36–49.

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook, M.A., Doull, J.L., Stuttard, C., and Vining, L.C. 1990. Sporulation of Streptomyces venezuelae in submerged cultures. J. Gen. Microbiol. 136, 581–588.

    Article  CAS  PubMed  Google Scholar 

  • Grantcharova, N., Lustig, U., and Flärdh, K. 2005. Dynamics of FtsZ assembly during sporulation in Streptomyces coelicolor A3 (2). J. Bacteriol. 87, 3227–3237.

    Article  CAS  Google Scholar 

  • Green, M.R. and Sambrook, J. 2012. Molecular cloning: a laboratory manual, 4th ed. Cold Spring Harbor Laboratory Press, New York, N.Y., USA.

    Google Scholar 

  • He, J., Sundararajan, A., Devitt, N.P., Schilkey, F.D., Ramaraj, T., and Melançon, C.E. 2016. Complete genome sequence of Streptomyces venezuelae ATCC 15439, producer of the methymycin/ pikromycin family of macrolide antibiotics, using PacBio technology. Genome Announc. 4, e00337–16.

    PubMed  PubMed Central  Google Scholar 

  • Hopwood, D.A. 2007. Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press.

    Google Scholar 

  • Jakimowicz, D. and van Wezel, G.P. 2012. Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere? Mol. Microbiol. 85, 393–404.

    CAS  Google Scholar 

  • Jung, W.S., Lee, S.K., Hong, J.S.J., Park, S.R., Jeong, S.J., Han, A.R., Sohng, J.K., Kim, B.G., Choi, C.Y., and Sherman, D.H. 2006. Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl. Microbiol. Biotechnol. 72, 763–769.

    Article  CAS  PubMed  Google Scholar 

  • Kendrick, K.E. and Ensign, J.C. 1983. Sporulation of Streptomyces griseus in submerged culture. J. Bacteriol. 155, 357–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser, T., Bibb, M., Buttner, M., Chater, K., and Hopwood, D. 2000. Practical Streptomyces genetics. The John Innes Foundation, Norwich, UK.

    Google Scholar 

  • Kim, Y.M. and Kim, J.h. 2004. Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3 (2). J. Microbiol. 42, 64–67.

    PubMed  Google Scholar 

  • Kim, E.J., Yang, I., and Yoon, Y.J. 2015. Developing Streptomyces venezuelae as a cell factory for the production of small molecules used in drug discovery. Arch. Pharm. Res. 38, 1606–1616.

    Article  CAS  PubMed  Google Scholar 

  • Kittendorf, J.D. and Sherman, D.H. 2009. The methymycin/pikromycin pathway: A model for metabolic diversity in natural product biosynthesis. Bioorg. Med. Chem. 17, 2137–2146.

    Article  CAS  PubMed  Google Scholar 

  • Kleinschnitz, E.M., Heichlinger, A., Schirner, K., Winkler, J., Latus, A., Maldener, I., Wohlleben, W., and Muth, G. 2011. Proteins encoded by the mre gene cluster in Streptomyces coelicolor A3 (2) cooperate in spore wall synthesis. Mol. Microbiol. 79, 1367–1379.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K.J. and Rho, Y.T. 1993. Characteristics of spores formed by surface and submerged cultures of Streptomyces albidoflavus SMF- 301. Microbiology 139, 3131–3137.

    CAS  Google Scholar 

  • Manteca, A., Alvarez, R., Salazar, N., Yagüe, P., and Sanchez, J. 2008. Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl. Environ. Microbiol. 74, 3877–3886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazza, P., Noens, E.E., Schirner, K., Grantcharova, N., Mommaas, A.M., Koerten, H.K., Muth, G., Flärdh, K., Van Wezel, G.P., and Wohlleben, W. 2006. MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Mol. Microbiol. 60, 838–852.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, J.R. and Flärdh, K. 2012. Signals and regulators that govern Streptomyces development. FEMS Microbiol. Rev. 36, 206–231.

    Article  CAS  PubMed  Google Scholar 

  • Morris, J.K. 1965. A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137.

    Google Scholar 

  • Novella, I.S., Barbés, C., and Sánchez, J. 1992. Sporulation of Streptomyces antibioticus ETHZ 7451 in submerged culture. Can. J. Microbiol. 38, 769–773.

    Article  CAS  PubMed  Google Scholar 

  • Rueda, B., Miguélez, E.M., Hardisson, C., and Manzanal, M.B. 2001. Mycelial differentiation and spore formation by Streptomyces brasiliensis in submerged culture. Can. J. Microbiol. 47, 1042–1047.

    Article  CAS  PubMed  Google Scholar 

  • Santos-Beneit, F., Gu, J.Y., Stimming, U., and Errington, J. 2017. ylmD and ylmE genes are dispensable for growth, cross-wall formation and sporulation in Streptomyces venezuelae. Heliyon 3, e00459.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwedock, J., McCormick, J., Angert, E., Nodwell, J., and Losick, R. 1997. Assembly of the cell division protein FtsZ into ladderlike structures in the aerial hyphae of Streptomyces coelicolor. Mol. Microbiol. 25, 847–858.

    Article  CAS  PubMed  Google Scholar 

  • Sigle, S., Ladwig, N., Wohlleben, W., and Muth, G. 2015. Synthesis of the spore envelope in the developmental life cycle of Streptomyces coelicolor. Int. J. Med. Microbiol. 305, 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Song, J.Y., Yoo, Y.J., Lim, S.K., Cha, S.H., Kim, J.E., Roe, J.H., Kim, J.F., and Yoon, Y.J. 2016. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites. J. Biotechnol. 219, 57–58.

    Article  CAS  PubMed  Google Scholar 

  • Stuttard, C. 1982. Temperate phages of Streptomyces venezuelae: lysogeny and host specificity shown by phages SV1 and SV2. Microbiology 128, 115–121.

    Article  Google Scholar 

  • van Dissel, D., Claessen, D., and van Wezel, G.P. 2014. Morphogenesis of Streptomyces in submerged cultures. Adv. Appl. Microbiol. 89, 1–45.

    Article  PubMed  Google Scholar 

  • van Keulen, G. and Dyson, P.J. 2014. Production of specialized metabolites by Streptomyces coelicolor A3 (2). Adv. Appl. Microbiol. 89, 217–266.

    Article  PubMed  Google Scholar 

  • van Wezel, G.P., Krabben, P., Traag, B.A., Keijser, B.J., Kerste, R., Vijgenboom, E., Heijnen, J.J., and Kraal, B. 2006. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl. Environ. Microbiol. 72, 5283–5288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Wezel, G.P. and McDowall, K.J. 2011. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat. Prod. Rep. 28, 1311–1333.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D.J., Xue, Y., Reynolds, K.A., and Sherman, D.H. 2001. Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J. Bacteriol. 183, 3468–3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, Y. and Sherman, D.H. 2001. Biosynthesis and combinatorial biosynthesis of pikromycin-related macrolides in Streptomyces venezuelae. Metab. Eng. 3, 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Yi, J.S., Kim, M., Kim, E.J., and Kim, B.G. 2018. Production of pikromycin using branched chain amino acid catabolism in Streptomyces venezuelae ATCC 15439. J. Ind. Microbiol. Biotechnol. 45, 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Yin, P., Wang, Y.H., Zhang, S.L., Chu, J., Zhuang, Y.P., Chen, N., Li, X.F., and Wu, Y.B. 2008. Effect of mycelial morphology on bioreactor performance and avermectin production of Streptomyces avermitilis in submerged cultivations. J. Chinese Inst. Chem. Eng. 39, 609–615.

    Article  CAS  Google Scholar 

  • Yoon, Y.J., Beck, B.J., Kim, B.S., Kang, H.Y., Reynolds, K.A., and Sherman, D.H. 2002. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae. Chem. Biol. 9, 203–214.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, S.H., Ha, S.M., Lim, J., Kwon, S., and Chun, J. 2017. A largescale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 110, 1281–1286.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hye Roe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JE., Choi, JS. & Roe, JH. Growth and differentiation properties of pikromycin-producing Streptomyces venezuelae ATCC15439. J Microbiol. 57, 388–395 (2019). https://doi.org/10.1007/s12275-019-8539-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8539-3

Keywords

Navigation