Skip to main content
Log in

Synthetic lethal interaction between oxidative stress response and DNA damage repair in the budding yeast and its application to targeted anticancer therapy

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Synthetic lethality is an extreme form of negative genetic epistasis that arises when a combination of functional deficiency in two or more genes results in cell death, whereas none of the single genetic perturbations are lethal by themselves. This unconventional genetic interaction is a modification of the concept of essentiality that can be exploited for the purpose of targeted cancer therapy. The yeast Saccharomyces cerevisiae has been pivotally used for early large-scale synthetic lethal screens due to its experimental advantages, but recent advances in gene silencing technology have now made direct high-throughput analysis possible in higher organisms. Identification of tumor-specific alterations and characterization of the mechanistic principles underlying synthetic lethal interaction are the key to applying synthetic lethality to clinical cancer treatment by enabling genome-driven oncological research. Here, we provide emerging ideas on the synthetic lethal interactions in budding yeast, particularly between cellular processes responsible for oxidative stress response and DNA damage repair, and discuss how they can be appropriately utilized for context-dependent cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander, A., Cai, S.L., Kim, J., Nanez, A., Sahin, M., MacLean, K.H., Inoki, K., Guan, K.L., Shen, J., Person, M.D., et al. 2010. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl. Acad. Sci. USA 107, 4153–4158.

    Article  PubMed  Google Scholar 

  • Ashworth, A. and Lord, C.J. 2018. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat. Rev. Clin. Oncol. 15, 564–576.

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay, S., Mehta, M., Kuo, D., Sung, M.K., Chuang, R., Jaehnig, E.J., Bodenmiller, B., Licon, K., Copeland, W., Shales, M., et al. 2010. Rewiring of genetic networks in response to DNA damage. Science 330, 1385–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender, A. and Pringle, J.R. 1991. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 1295–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitler, B.G., Watson, Z.L., Wheeler, L.J., and Behbakht, K. 2017. PARP inhibitors: Clinical utility and possibilities of overcoming resistance. Gynecol. Oncol. 147, 695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher, B. and Jenna, S. 2013. Genetic interaction networks: Better understand to better predict. Front. Genet. 4, 290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges, C. 1922. The origin of variations in sexual and sex-limited characters. Am. Nat. 56, 51–63.

    Article  Google Scholar 

  • Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917.

    Article  CAS  PubMed  Google Scholar 

  • Byrne, A.B., Weirauch, M.T., Wong, V., Koeva, M., Dixon, S.J., Stuart, J.M., and Roy, P.J. 2007. A global analysis of genetic interactions in Caenorhabditis elegans. J. Biol. 6, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadet, J. and Davies, K.J.A. 2017. Oxidative DNA damage & repair: An introduction. Free Radic. Biol. Med. 107, 2–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cam, H., Easton, J.B., High, A., and Houghton, P.J. 2010. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α. Mol. Cell 40, 509–520.

    CAS  PubMed  Google Scholar 

  • Carter, C.D., Kitchen, L.E., Au, W.C., Babic, C.M., and Basrai, M.A. 2005. Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors. Mol. Cell. Biol. 25, 10273–10285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, J.E., Heo, S.H., Kim, M.J., and Chung, W.H. 2018. Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae. Free Radic. Biol. Med. 129, 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Chung, W.H. 2016. Mechanisms of a novel anticancer therapeutic strategy involving atmospheric pressure plasma-mediated apoptosis and DNA strand break formation. Arch. Pharm. Res. 39, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Chung, W.H. 2017. Unraveling new functions of superoxide dismutase using yeast model system: Beyond its conventional role in superoxide radical scavenging. J. Microbiol. 55, 409–416.

    Article  CAS  PubMed  Google Scholar 

  • Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L., Toufighi, K., Mostafavi, S., et al. 2010. The genetic landscape of a cell. Science 327, 425–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davierwala, A.P., Haynes, J., Li, Z., Brost, R.L., Robinson, M.D., Yu, L., Mnaimneh, S., Ding, H., Zhu, H., Chen, Y., et al. 2005. The synthetic genetic interaction spectrum of essential genes. Nat. Genet. 37, 1147–1152.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, S.J., Fedyshyn, Y., Koh, J.L., Prasad, T.S., Chahwan, C., Chua, G., Toufighi, K., Baryshnikova, A., Hayles, J., Hoe, K.L., et al. 2008. Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc. Natl. Acad. Sci. USA 105, 16653–16658.

    Article  PubMed  Google Scholar 

  • Dixon, S.J., Costanzo, M., Baryshnikova, A., Andrews, B., and Boone, C. 2009. Systematic mapping of genetic interaction networks. Annu. Rev. Genet. 43, 601–625.

    Article  CAS  PubMed  Google Scholar 

  • Dizdaroglu, M. 2012. Oxidatively induced DNA damage: Mechanisms, repair and disease. Cancer Lett. 327, 26–47.

    Article  CAS  PubMed  Google Scholar 

  • Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921.

    Article  CAS  PubMed  Google Scholar 

  • Foury, F. 1997. Human genetic diseases: a cross-talk between man and yeast. Gene 195, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Georgi, B., Voight, B.F., and Bućan, M. 2013. From mouse to human: Evolutionary genomics analysis of human orthologs of essential genes. PLoS Genet. 9, e1003484.

    Article  CAS  Google Scholar 

  • Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., André, B., et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    Article  CAS  PubMed  Google Scholar 

  • Glasauer, A. and Chandel, N.S. 2014. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 92, 90–101.

    Article  CAS  Google Scholar 

  • Guarente, L. 1993. Synthetic enhancement in gene interaction: A genetic tool come of age. Trends Genet. 9, 362–366.

    Article  CAS  PubMed  Google Scholar 

  • Guénolé, A., Srivas, R., Vreeken, K., Wang, Z.Z., Wang, S., Krogan, N.J., Ideker, T., and van Attikum, H. 2013. Dissection of DNA damage responses using multiconditional genetic interaction maps. Mol. Cell 49, 346–358.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z., Deshpande, R., and Paull, T.T. 2010a. ATM activation in the presence of oxidative stress. Cell Cycle 9, 4805–4811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Z., Kozlov, S., Lavin, M.F., Person, M.D., and Paull, T.T. 2010b. ATM activation by oxidative stress. Science 330, 517–521.

    Article  CAS  PubMed  Google Scholar 

  • Guo, J., Liu, H., and Zheng, J. 2016. SynLethDB: Synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res. 44(D1), D1011–1017.

    Google Scholar 

  • Hartwell, L.H., Szankasi, P., Roberts, C.J., Murray, A.W., and Friend, S.H. 1997. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068.

    Article  CAS  PubMed  Google Scholar 

  • Helleday, T., Petermann, E., Lundin, C., Hodgson, B., and Sharma, R.A. 2008. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193–204.

    Article  CAS  PubMed  Google Scholar 

  • Huang, P., Feng, L., Oldham, E.A., Keating, M.J., and Plunkett, W. 2000. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407, 390–395.

    Article  CAS  PubMed  Google Scholar 

  • Huang, M.E. and Kolodner, R.D. 2005. A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol. Cell 17, 709–720.

    Article  CAS  PubMed  Google Scholar 

  • Huang, M.E., Rio, A.G., Nicolas, A., and Kolodner, R.D. 2003. A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc. Natl. Acad. Sci. USA 100, 11529–11534.

    Article  CAS  PubMed  Google Scholar 

  • Iraqui, I., Faye, G., Ragu, S., Masurel-Heneman, A., Kolodner, R.D., and Huang, M.E. 2008. Human peroxiredoxin PrxI is an orthologue of yeast Tsa1, capable of suppressing genome instability in Saccharomyces cerevisiae. Cancer Res. 68, 1055–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, K., Hirao, A., Arai, F., Matsuoka, S., Takubo, K., Hamaguchi, I., Nomiyama, K., Hosokawa, K., Sakurada, K., Nakagata, N., et al. 2004. Regulation of oxidative stress by ATM is required for selfrenewal of haematopoietic stem cells. Nature 431, 997–1002.

    Article  CAS  PubMed  Google Scholar 

  • Kabir, M., Barradas, A., Tzotzos, G.T., Hentges, K.E., and Doig, A.J. 2017. Properties of genes essential for mouse development. PLoS One 12, e0178273.

    Google Scholar 

  • Karathia, H., Vilaprinyo, E., Sorribas, A., and Alves, R. 2011. Saccharomyces cerevisiae as a model organism: A comparative study. PLoS One 6, e16015.

    Article  CAS  Google Scholar 

  • Kaufman, B., Shapira-Frommer, R., Schmutzler, R.K., Audeh, M.W., Friedlander, M., Balmaña, J., Mitchell, G., Fried, G., Stemmer, S.M., Hubert, A., et al. 2015. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33, 244–250.

    Article  CAS  PubMed  Google Scholar 

  • Klaunig, J.E. and Kamendulis, L.M. 2004. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 44, 239–267.

    Article  CAS  PubMed  Google Scholar 

  • Koppensteiner, R., Samartzis, E.P., Noske, A., von Teichman, A., Dedes, I., Gwerder, M., Imesch, P., Ikenberg, K., Moch, H., Fink, D., et al. 2014. Effect of MRE11 loss on PARP-inhibitor sensitivity in endometrial cancer in vitro. PLoS One 9, e100041.

    Article  CAS  Google Scholar 

  • Kryston, T.B., Georgiev, A.B., Pissis, P., and Georgakilas, A.G. 2011. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 711, 193–201.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y., Kim, K., Kang, K.T., Lee, J.S., Yang, S.S., and Chung, W.H. 2014. Atmospheric-pressure plasma jet induces DNA doublestrand breaks that require a Rad51-mediated homologous recombination for repair in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 560, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Lengauer, C., Kinzler, K.W., and Vogelstein, B. 1998. Genetic instabilities in human cancers. Nature 396, 643–649.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Burness, M.L., Martin-Trevino, R., Guy, J., Bai, S., Harouaka, R., Brooks, M.D., Shang, L., Fox, A., Luther, T.K., et al. 2017. RAD51 mediates resistance of cancer stem cells to PARP inhibition in triple-negative breast cancer. Clin. Cancer Res. 23, 514–522.

    Article  CAS  PubMed  Google Scholar 

  • López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. 2013. The hallmarks of aging. Cell 153, 1194–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord, C.J. and Ashworth, A. 2017. PARP inhibitors: Synthetic lethality in the clinic. Science 355, 1152–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzano, C., Gandin, V., Folda, A., Scutari, G., Bindoli, A., and Rigobello, M.P. 2007. Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic. Biol. Med. 42, 872–881.

    Article  CAS  PubMed  Google Scholar 

  • McAndrew, E.N., Lepage, C.C., and McManus, K.J. 2016. The synthetic lethal killing of RAD54B-deficient colorectal cancer cells by PARP1 inhibition is enhanced with SOD1 inhibition. Oncotarget 7, 87417–87430.

    Article  PubMed  PubMed Central  Google Scholar 

  • McLellan, J.L., O’Neil, N.J., Barrett, I., Ferree, E., van Pel, D.M., Ushey, K., Sipahimalani, P., Bryan, J., Rose, A.M., and Hieter, P. 2012. Synthetic lethality of cohesins with PARPs and replication fork mediators. PLoS Genet. 8, e1002574.

    Article  CAS  Google Scholar 

  • McManus, K.J., Barrett, I.J., Nouhi, Y., and Hieter, P. 2009. Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc. Natl. Acad. Sci. USA 106, 3276–3281.

    Article  PubMed  Google Scholar 

  • Mendes-Pereira, A.M., Martin, S.A., Brough, R., McCarthy, A., Taylor, J.R., Kim, J.S., Waldman, T., Lord, C.J., and Ashworth, A. 2009. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nijman, S.M. 2011. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett. 585, 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neil, N.J., Bailey, M.L., and Hieter, P. 2017. Synthetic lethality and cancer. Nat. Rev. Genet. 18, 613–623.

    Article  CAS  PubMed  Google Scholar 

  • Orsburn, B., Escudero, B., Prakash, M., Gesheva, S., Liu, G., Huso, D.L., and Franco, S. 2010. Differential requirement for H2AX and 53BP1 in organismal development and genome maintenance in the absence of poly(ADP)ribosyl polymerase 1. Mol. Cell. Biol. 30, 2341–2352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, X., Ye, P., Yuan, D.S., Wang, X., Bader, J.S., and Boeke, J.D. 2006. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081.

    Article  CAS  PubMed  Google Scholar 

  • Pan, X., Yuan, D.S., Xiang, D., Wang, X., Sookhai-Mahadeo, S., Bader, J.S., Hieter, P., Spencer, F., and Boeke, J.D. 2004. A robust toolkit for functional profiling of the yeast genome. Mol. Cell 16, 487–496.

    Article  CAS  PubMed  Google Scholar 

  • Ragu, S., Faye, G., Iraqui, I., Masurel-Heneman, A., Kolodner, R.D., and Huang, M.E. 2007. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc. Natl. Acad. Sci. USA 104, 9747–9752.

    Article  CAS  PubMed  Google Scholar 

  • Rancati, G., Moffat, J., Typas, A., and Pavelka, N. 2018. Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 19, 34–49.

    Article  CAS  PubMed  Google Scholar 

  • Rowe, L.A., Degtyareva, N., and Doetsch, P.W. 2008. DNA damageinduced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic. Biol. Med. 45, 1167–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe, L.A., Degtyareva, N., and Doetsch, P.W. 2012. Yap1: A DNA damage responder in Saccharomyces cerevisiae. Mech. Ageing Dev. 133, 147–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajesh, B.V., Bailey, M., Lichtensztejn, Z., Hieter, P., and McManus, K.J. 2013. Synthetic lethal targeting of superoxide dismutase 1 selectively kills RAD54B-deficient colorectal cancer cells. Genetics 195, 757–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajesh, B.V. and McManus, K.J. 2015. Targeting SOD1 induces synthetic lethal killing in BLM-and CHEK2-deficient colorectal cancer cells. Oncotarget 6, 27907–27922.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobhakumari, A., Love-Homan, L., Fletcher, E.V., Martin, S.M., Parsons, A.D., Spitz, D.R., Knudson, C.M., and Simons, A.L. 2012. Susceptibility of human head and neck cancer cells to combined inhibition of glutathione and thioredoxin metabolism. PLoS One 7, e48175.

    Article  CAS  Google Scholar 

  • Srivas, R., Shen, J.P., Yang, C.C., Sun, S.M., Li, J., Gross, A.M., Jensen, J., Licon, K., Bojorquez-Gomez, A., Klepper, K., et al. 2016. A network of conserved synthetic lethal interactions for exploration of precision cancer therapy. Mol. Cell 63, 514–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarailo, M., Tarailo, S., and Rose, A.M. 2007. Synthetic lethal interactions identify phenotypic “nterologs” of the spindle assembly checkpoint components. Genetics 177, 2525–2530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong, A.H., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Pagé, N., Robinson, M., Raghibizadeh, S., Hogue, C.W., Bussey, H., et al. 2001. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368.

    Article  CAS  PubMed  Google Scholar 

  • Tong, A.H., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., et al. 2004. Global mapping of the yeast genetic interaction network. Science 303, 808–813.

    Article  CAS  PubMed  Google Scholar 

  • Tsang, C.K., Chen, M., Cheng, X., Qi, Y., Chen, Y., Das, I., Li, X., Vallat, B., Fu, L.W., Qian, C.N., et al. 2018. SOD1 phosphorylation by mTORC1 couples nutrient sensing and redox regulation. Mol. Cell 70, 502–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang, C.K., Liu, Y., Thomas, J., Zhang, Y., and Zheng, X.F. 2014. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat. Commun. 5, 3446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner, N.C., Lord, C.J., Iorns, E., Brough, R., Swift, S., Elliott, R., Rayter, S., Tutt, A.N., and Ashworth, A. 2008. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27, 1368–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watters, D., Kedar, P., Spring, K., Bjorkman, J., Chen, P., Gatei, M., Birrell, G., Garrone, B., Srinivasa, P., Crane, D.I., et al. 1999. Localization of a portion of extranuclear ATM to peroxisomes. J. Biol. Chem. 274, 34277–34282.

    Article  CAS  PubMed  Google Scholar 

  • Wesoly, J., Agarwal, S., Sigurdsson, S., Bussen, W., Van Komen, S., Qin, J., van Steeg, H., van Benthem, J., Wassenaar, E., Baarends, W.M., et al. 2006. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol. Cell. Biol. 26, 976–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler, D.B., Bailey, S.N., Guertin, D.A., Carpenter, A.E., Higgins, C.O., and Sabatini, D.M. 2004. RNAi living-cell microarrays for loss-of-function screens in Drosophila melanogaster cells. Nat. Methods 1, 127–132.

    Article  CAS  PubMed  Google Scholar 

  • White, J.K., Gerdin, A.K., Karp, N.A., Ryder, E., Buljan, M., Bussell, J.N., Salisbury, J., Clare, S., Ingham, N.J., Podrini, C., et al. 2013. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154, 452–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J.D., Bussey, H., et al. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.

    Article  CAS  PubMed  Google Scholar 

  • Wong, S.L., Zhang, L.V., Tong, A.H., Li, Z., Goldberg, D.S., King, O.D., Lesage, G., Vidal, M., Andrews, B., Bussey, H., et al. 2004. Combining biological networks to predict genetic interactions. Proc. Natl. Acad. Sci. USA 101, 15682–15687.

    Article  CAS  PubMed  Google Scholar 

  • Yan, S., Sorrell, M., and Berman, Z. 2014. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell. Mol. Life Sci. 71, 3951–3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi, D.G., Kim, M.J., Choi, J.E., Lee, J., Jung, J., Huh, W.K., and Chung, W.H. 2016. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae. Free Radic. Biol. Med. 101, 424–433.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Hyun Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.E., Chung, WH. Synthetic lethal interaction between oxidative stress response and DNA damage repair in the budding yeast and its application to targeted anticancer therapy. J Microbiol. 57, 9–17 (2019). https://doi.org/10.1007/s12275-019-8475-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8475-2

Keywords

Navigation