Skip to main content
Log in

Microbial transformation of Se oxyanions in cultures of Delftia lacustris grown under aerobic conditions

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Delftia lacustris is reported for the first time as a selenate and selenite reducing bacterium, capable of tolerating and growing in the presence of ≥ 100 mM selenate and 25 mM selenite. The selenate reduction profiles of D. lacustris were investigated by varying selenate concentration, inoculum size, concentration and source of organic electron donor in minimal salt medium. Interestingly, the bacterium was able to reduce both selenate and selenite under aerobic conditions. Although considerable removal of selenate was observed at all concentrations investigated, D. lacustris was able to completely reduce 0.1 mM selenate within 96 h using lactate as the carbon source. Around 62.2% unaccounted selenium (unidentified organo-selenium compounds), 10.9% elemental selenium and 26.9% selenite were determined in the medium after complete reduction of selenate. Studies of the enzymatic activity of the cell fractions show that the selenite/selenate reducing enzymes were intracellular and independent of NADPH availability. D. lacustris shows an unique metabolism of selenium oxyanions to form elemental selenium and possibly also selenium ester compounds, thus a potential candidate for the remediation of selenium-contaminated wastewaters in aerobic environments. This novel finding will advance the field of bioremediation of selenium-contaminated sites and selenium bio-recovery and the production of potentially beneficial organic and inorganic reactive selenium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, P., Huang, H., Hu, Z.Y., Häggblom, M.M., and Zhu, Y.G. 2012. Impact of temperature, CO2 fixation and nitrate reduction on selenium reduction, by a paddy soil Clostridium strain. J. Appl. Microbiol. 114, 703–712

    Article  CAS  Google Scholar 

  • Bébien, M., Kirsch, J., Méjean, V., and Verméglio, A. 2002. Involvement of a putative molybdenum enzyme in the reduction of selenate by Escherichia coli. Microbiology 148, 3865–3872

    Article  PubMed  Google Scholar 

  • Bottura, G. and Pavesi, M.A. 1987. Thin-layer chromatography of some organic selenium compounds and their oxygen and sulfur analogs. Microchem. J. 35, 112–119

    Article  CAS  Google Scholar 

  • Butler, C.S., Debieux, C.M., Dridge, E.J., Splatt, P., and Wright, M. 2012. Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem. Soc. Trans. 40, 1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Dessì, P., Jain, R., Singh, S., Seder-Colomina, M., van Hullebusch, E.D., Rene, E.R., Ahammad, S.Z., Carucci, A., and Lens, P.N.L. 2016. Effect of temperature on selenium removal from wastewater by UASB reactors. Water Res. 94, 146–154

    Article  CAS  PubMed  Google Scholar 

  • Dungan, R.S., Yates, S.R., and Frankenberger, W.T. 2003. Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural pond sediment. Environ. Microbiol. 5, 287–295

    Article  CAS  PubMed  Google Scholar 

  • Eswayah, A.S., Smith, T.J., and Gardiner, P.H.E. 2016. Microbial transformations of selenium species of relevance to bioremediation. Appl. Environ. Microbiol. 82, 4848–4859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankenberger, W.T.Jr., Amrhein, C., Fan, T.W.M., Flaschi, D., Glater, J., Kartinen, E.Jr., Kovac, K., Lee, E., Ohlendorf, H.M., Owens, L., et al. 2004. Advanced treatment technologies in the remediation of seleniferous drainage waters and sediments. Irrig. Drain. Syst. 18, 19–42

    Article  Google Scholar 

  • Hapuarachchi, S., Swearingen, J., and Chasteen, T.G. 2004. Determination of elemental and precipitated selenium production by a facultative anaerobe grown under sequential anaerobic/aerobic conditions. Process Biochem. 39, 1607–1613

    Article  CAS  Google Scholar 

  • Huawei, Z. 2009. Selenium as an essential micronutrient: Roles in cell cycle and apoptosis. Molecules 14, 1263–1278

    Article  CAS  Google Scholar 

  • Hunter, W.J., Kuykendall, L.D., and Manter, D.K. 2007. Rhizobium selenireducens sp. nov.: a selenite-reducing α-Proteobacteria isolated from a bioreactor. Curr. Microbiol. 55, 455–460

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen, N.O.G., Brandt, K.K., Nybroe, O., and Hansen, M. 2009. Delftia lacustris sp. nov., a peptidoglycan-degrading bacterium from fresh water, and emended description of Delftia tsuruhatensis as a peptidoglycan-degrading bacterium. Int. J. Syst. Evol. Microbiol. 59, 2195–2199

    Article  CAS  PubMed  Google Scholar 

  • Kagami, T., Narita, T., Kuroda, M., Notaguchi, E., Yamashita, M., Sei, K., Soda, S., and Ike, M. 2013. Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Res. 47, 1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Kaláb, M., Yang, A., and Chabot, D. 2008. Conventional scanning electron microscopy of bacteria. Infocus 10, 44–61

    Google Scholar 

  • Kuroda, M., Notaguchi, E., Sato, A., Yoshioka, M., Hasegawa, A., Kagami, T., Narita, T., Yamashita, M., Kazunari, S., Soda, S., et al. 2011. Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. J. Biosci. Bioeng. 112, 259–264

    Article  CAS  PubMed  Google Scholar 

  • Lampis, S., Zonaro, E., Bertolini, C., Bernardi, P., Butler, C.S., and Vallini, G. 2014. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb. Cell Fact. 13, 35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, B., Liu, N., Li, Y., Jing, W., Fan, J., Li, D., Zhang, L., Zhang, X., Zhang, Z., and Wang, L. 2014. Reduction of selenite to red elemental selenium by Rhodopseudomonas palustris strain N. PLoS One 9, e95955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losi, M.E. and Frankenberger, W.T. Jr. 1997. Reduction of selenium oxanions by Enterobacter cloacae strain SLD1a-1: Isolation and growth of the bacterium and its expulsion of selenium particles. Environ. Toxicol. Chem. 16, 3079–3084

    Article  Google Scholar 

  • Mal, J., Nancharaiah, Y.V., van Hullebusch, E.D., and Lens, P.N.L. 2016. Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge. Bioresour. Technol. 206, 1–8

    Article  CAS  PubMed  Google Scholar 

  • Mishra, R.R., Prajapati, S., Das, J., Dangar, T.K., Das, N., and Thatoi, H. 2011. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84, 1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Nancharaiah, Y.V. and Lens, P.N.L. 2015a. Selenium biomineralization for biotechnological applications. Trends Biotechnol. 33, 323–330

    Article  CAS  PubMed  Google Scholar 

  • Nancharaiah, Y.V. and Lens, P.N.L. 2015b. The ecology and biotechnology of selenium respiring bacteria. Microbiol. Mol. Biol. R. 79, 61–80

    Article  CAS  Google Scholar 

  • Rayman, M.P. 2012. Selenium and human health. Lancet 379, 1256–1268.

    Article  CAS  PubMed  Google Scholar 

  • Sarret, G., Avoscan, L., Carrie, M., Collins, R., Geoffroy, N., Carrot, F., Covès, J., and Gouget, B. 2005. Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl. Environ. Microbiol. 71, 2331–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki, K., Blowes, D.W., Ptacek, C.J., and Gould, W.D. 2008. Immobilization of Se(VI) in mine drainage by permeable reactive barriers: column performance. Appl. Geochem. 23, 1012–1022

    Article  CAS  Google Scholar 

  • Schröder, I., Rech, S., Krafft, T., and Macy, J.M. 1997. Purification and characterization of the selenate reductase from Thauera selenatis. J. Biol. Chem. 272, 23765–23768

    Article  PubMed  Google Scholar 

  • Stams, A.J.M., Grolle, K.C.F., Frijters, C.T.M.J., and Van Lier, J.B. 1992. Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum. Appl. Environ. Microbiol. 58, 346–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, L.C., Nancharaiah, Y.V., van Hullebusch, E.D., and Lens, P.N.L. 2016. Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv. 34, 886–907

    Article  CAS  PubMed  Google Scholar 

  • Tinggi, U. 2008. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 13, 102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tugarova, A.V., Vetchinkina, E.P., Loshchinina, E.A., Burov, A.M., Nikitina, V.E., and Kamnev, A.A. 2014. Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles. Microb. Ecol. 68, 495–503

    Article  CAS  PubMed  Google Scholar 

  • Watts, C.A., Ridley, H., Condie, K.L., Leaver, J.T., Richardson, D.J., and Butler, C.S. 2003. Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membranebound enzyme that is distinct from the membrane-bound nitrate reductase. FEMS Microbiol. Lett. 228, 273–279

    Article  CAS  PubMed  Google Scholar 

  • Wu, L. 2004. Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol. Environ. Saf. 57, 257–269

    Article  CAS  PubMed  Google Scholar 

  • Yamamura, S., Yamashita, M., Fujimoto, N., Kuroda, M., Kashiwa, M., Sei, K., Fujita, M., and Ike, M. 2007. Bacillus selenatarsenatis sp. nov., a selenate- and arsenate-reducing bacterium isolated from the effluent drain of a glass-manufacturing plant. Int. J. Syst. Evol. Microbiol. 57, 1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Yao, R., Wang, R., Wang, D., Su, J., Zheng, S., and Wang, G. 2014. Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int. J. Syst. Evol. Microbiol. 64, 805–811

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Okeke, B.C., and Frankenberger, W.T. 2008. Bacterial reduction of selenate to elemental selenium utilizing molasses as a carbon source. Bioresour. Technol. 99, 1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Zheng, S., Su, J., Wang, L., Yao, R., Wang, D., Deng, Y., Wang, R., Wang, G., and Rensing, C. 2014. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil. BMC Microbiol. 14, 204

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrutika L. Wadgaonkar.

Additional information

Supplemental material for this article may be found at https://doi.org/www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadgaonkar, S.L., Nancharaiah, Y.V., Jacob, C. et al. Microbial transformation of Se oxyanions in cultures of Delftia lacustris grown under aerobic conditions. J Microbiol. 57, 362–371 (2019). https://doi.org/10.1007/s12275-019-8427-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8427-x

Keywords

Navigation