Skip to main content
Log in

Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Various Nostoc spp. and related cyanobacteria are able to survive extreme temperatures and are among the most successful colonists of high-elevation sites being exposed due to glacial retreat. It is unclear, however, if cyanobacteria can grow during the extreme freeze-thaw cycles that occur on a year-round basis at high-elevation, peri-glacial sites or if they only grow during the rare periods when freeze-thaw cycles do not occur. We conducted several experiments to determine if cyanobacteria that form biological soil crusts (BSCs) at high-elevation sites (> 5,000 m.a.s.l.) in the Andes can grow during diurnal freeze-thaw cycles on a par with those that occur in the field. Here we show that a soil crust that had been frozen at -20°C for five years was able to increase from 40% to 100% soil coverage during a 45-day incubation during which the soil temperature cycled between -12°C and 26°C every day. In a second, experiment an undeveloped soil with no visible BSCs showed a statistically significant shift in the bacterial community from one containing few cyanobacterial sequences (8% of sequences) to one dominated (27%) by Nostoc, Microcoleus, and Leptolyngbya phylotypes during a 77-day incubation with daily freeze-thaw cycles. In addition, counts of spherical Nostoc-like colonies increased significantly on the soil surface during the experiment, especially in microcosms receiving phosphorus. Taken together these results show that freeze-thaw cycles alone do not limit the growth of BSCs in high-elevation soils, and provide new insight into how life is able to thrive in one of the most extreme terrestrial environments on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahl, J., Lau, M.C.Y., Smith, G.J.D., Vijaykrishna, D., Cary, S.C., Lacap, D.C., Lee, C.K., Papke, R.T., Warren-Rhodes, K.A., Wong, F.K.Y., et al. 2011. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat. Commun. 2, 163.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Belnap, J., Büdel, B., and Lange, O.L. 2001. Biological soil crusts: characteristics and distribution, pp. 3–30. In Biological soil crusts: structure, function, and management. Springer, Berlin, Germany.

    Chapter  Google Scholar 

  • Bowker, M.A. 2007. Biological soil crust rehabilitation in theory and practice: an underexploited opportunity. Restor. Ecol. 15, 13–23.

    Article  Google Scholar 

  • Boyd, W.L. and Boyd, J.W. 1962. Viability of thermophiles and coliform bacteria in arctic soils and water. Can. J. Microbiol. 8, 189–192.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, R.E. 1962. Species of Nostoc vaucher occurring in the Sonoran Desert in Arizona. Trans. Am. Microsc. Soc. 81, 379–384.

    Article  Google Scholar 

  • Cameron, R.E. and Devaney, J.R. 1970. Antarctic soil algal crusts: scanning electron and optical microscope study. Trans. Am. Microsc. Soc. 89, 264–273.

    Article  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cuatrecasas, J. 1968. Paramo vegetation and its life forms: geoecology of the mountainous regions of the tropical Americas. Coll. Geogr. 9, 163–186.

    Google Scholar 

  • Darcy, J.L. and Schmidt, S.K. 2016. Nutrient limitation of microbial phototrophs on a debris-covered glacier. Soil Biol. Biochem. 95, 156–163.

    Article  CAS  Google Scholar 

  • Darcy, J.L., Schmidt, S.K., Knelman, J.E., Cleveland, C.C., Castle, S.C., and Nemergut, D.R. 2018. Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat. Sci. Adv. 4, eaaq0942.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dodds, W.K., Gudder, D.A., and Mollenhauer, D. 1995. The ecology of Nostoc. J. Phycol. 31, 2–18.

    Article  CAS  Google Scholar 

  • Etemadi-Khah, A., Pourbabaee, A.A., Alikhani, H.A., Noroozi, M., and Bruno, L. 2017. Biodiversity of isolated cyanobacteria from desert soils in Iran. Geomicrobiol. J. 34, 784–794.

    Article  CAS  Google Scholar 

  • Feng, Y.N., Zhang, Z.C., Feng, J.L., and Qiu, B.S. 2012. Effects of UV-B radiation and periodic desiccation on the morphogenesis of the edible terrestrial cyanobacterium Nostoc flagelliforme. Appl. Environ. Microbiol. 78, 7075–7081.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fleming, E.D. and Castenholz, R.W. 2007. Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ. Microbiol. 9, 1448–1455.

    Article  PubMed  CAS  Google Scholar 

  • Gao, K.S. and Ye, C.P. 2003. Culture of the terrestrial cyanobacterium Nostoc flagelliforme (Cyanophyceae) under aquatic conditions. J. Phycol. 39, 617–623.

    Article  Google Scholar 

  • Garcia-Pichel, F. and Pringault, O. 2001a. Cyanobacteria track water in desert soils. Nature 413, 380–381.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel, F., López-Cortés, A., and Nübel, U. 2001b. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl. Environ. Microbiol. 67, 1902–1910.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harding, T., Jungblut, A.D., Lovejoy, C., and Vincent, W.F. 2011. Microbes in high arctic snow and implications for the cold biosphere. Appl. Environ. Microbiol. 77, 3234–3243.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hedberg, I. and Hedberg, O. 1979. Tropical-alpine life-forms of vascular plants. Oikos 33, 297–307.

    Article  Google Scholar 

  • Knelman, J.E., Legg, T.M., O’Neill, S.P., González, A., Cleveland, C.C., and Nemergut, D.R. 2012. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol. Biochem. 46, 172–180.

    Article  CAS  Google Scholar 

  • Knelman, J.E., Schmidt, S.K., Darcy, J.L., Castle, S.C., and Nemergut, D.R. 2014. Nutrient addition dramatically accelerates microbial community succession. PLoS One 9, e102609.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lipman, C.B. 1941. The successful revival of Nostoc commune from a herbarium specimen eighty-seven years old. Bull. Torrey Bot. Club 68, 664–666.

    Article  Google Scholar 

  • Liu, R., Li, K., Zhang, H., Zhu, J., and Joshi, D. 2014. Spatial distribution of microbial communities associated with dune landform in the Gurbantunggut Desert, China. J. Microbiol. 52, 898–907.

    Article  PubMed  CAS  Google Scholar 

  • Mager, D.M. and Thomas, A.D. 2011. Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J. Arid Environ. 75, 91–97.

    Article  Google Scholar 

  • Miller, S.R. and Castenholz, R.W. 2000. Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Appl. Environ. Microbiol. 66, 4222–4229.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nemergut, D.R., Anderson, S.P., Cleveland, C.C., Martin, A.P., Miller, A.E., Seimon, A., and Schmidt, S.K. 2007. Microbial community succession in unvegetated, recently-deglaciated soil. Microb. Ecol. 53, 110–122.

    Article  PubMed  Google Scholar 

  • Nemergut, D.R., Schmidt, S.K., Fukami, T., O’Neill, S.P., Bilinski, T.M., Stanish, L.F., Knelman, J.E., Darcy, J.L., Lynch, R.C., and Wickey, P. 2013. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen, J., Blanchet, F.G., and Kindt, R. 2013. Package ‘vegan’. Community Ecology Package, Version 2.

    Google Scholar 

  • Park, J.I., Grant, C.M., Attfield, P.V., and Dawes, I.W. 1997. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAScyclic AMP signal transduction pathway. Appl. Environ. Microbiol. 63, 3818–3824.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Potts, M. 2001. Desiccation tolerance: a simple process? Trends Microbiol. 9, 553–559.

    Article  PubMed  CAS  Google Scholar 

  • Price, M.N., Dehal, P.S., and Arkin, A.P. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J.L., Basantes, R., Vuille, M., Sicart, J.E., Huggel, C., et al. 2013. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7, 81–102.

    Article  Google Scholar 

  • Sakamoto, T., Yoshida, T., Arima, H., Hatanaka, Y., Takani, Y., and Tamaru, Y. 2009. Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium Nostoc commune. Phycological Res. 57, 66–73.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K. 2014. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments. Ann. Bot. 114, 17–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sand-Jensen, K. and Jespersen, T.S. 2012. Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (-269 to 105°C), pH and salt stress. Oecologia 169, 331–339.

    Article  PubMed  Google Scholar 

  • Sattin, S.R., Cleveland, C.C., Hood, E., Reed, S.C., King, A.J., Schmidt, S.K., Robeson, M.S., and Nemergut, D.R. 2009. Functional shifts in unvegetated, perhumid, recently deglaciated soils do not correlate with shifts in soil bacterial community composition. J. Microbiol. 47, 673–681.

    Article  PubMed  Google Scholar 

  • Schmidt, S.K., Lynch, R., King, A.J., Karki, D., Robeson, M.S., Nagy, L., Williams, M.W., Mitter, M.S., and Freeman, K.R. 2011a. Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proc. Roy. Soc. B 278, 702–708.

    Article  CAS  Google Scholar 

  • Schmidt, S.K., Cleveland, C.C., Nemergut, D.R., Reed S.C., King, A.J., and Sowell, P. 2011b. Estimating phosphorus availability for microbial growth in an emerging landscape. Geoderma 163, 135–140.

    Article  CAS  Google Scholar 

  • Schmidt, S.K., Darcy, J.L., Sommers, P., Gunawan, E., Knelman, J.E., and Jager, K. 2017a. Freeze–thaw revival of rotifers and algae in a desiccated, high-elevation (5500 meters) microbial mat, high Andes, Perú. Extremophiles 21, 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, S.K., Nemergut, D.R., Todd, B.T., Darcy, J.L., Cleveland, C.C., and King, A.J. 2012. A simple method for determining limiting nutrients for photosynthetic crusts. Plant Ecol. Div. 5, 513–519.

    Article  Google Scholar 

  • Schmidt, S.K., Nemergut, D.R., Miller, A.E., Freeman, K.R., King, A.J., and Seimon, A. 2009. Microbial activity and diversity during extreme freeze-thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 13, 807–816.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, S.K., Reed, S.C., Nemergut, D.R., Grandy, A.S., Cleveland, C.C., Weintraub, M.N., Hill, A.W., Costello, E.K., Meyer, A.F., Neff, J.C., et al. 2008. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc. Roy. Soc. B 275, 2793–2802.

    Article  CAS  Google Scholar 

  • Schmidt, S.K., Vimercati, L., Darcy, J.L., Arán, P., Gendron, E.M.S., Solon, A.J., Porazinska, D., and Dorador, C. 2017b. A Naganishia in high places: functioning populations or dormant cells from the atmosphere? Mycology 8, 153–163.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Seiderer, T., Venter, A., van Wyk, F., Levanets, A., and Jordaan, A. 2017. Growth of soil algae and cyanobacteria on gold mine tailings material. S. African J. Sci. 113, 1–6.

    Google Scholar 

  • Shtarkman, Y.M., Kocer, Z.A., Edgar, R., Veerapaneni, R.S., D’Elia, T., Morris, P.F., and Rogers, S.O. 2013. Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting Bacteria and Eukarya. PLoS One 8, E67221.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sklenár, P., Kucerová, A., Macková, J., and Romoleroux, K. 2016. Temperature microclimates of plants in a tropical alpine environment: how much does growth form matter? Arct. Antarct. Alp. Res. 48, 61–78.

    Article  Google Scholar 

  • Stres, B., Philippot, L., Faganeli, J., and Tiedje, J.M. 2010. Frequent freeze-thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: a laboratory experiment. FEMS Microbiol. Ecol. 74, 323–335.

    Article  PubMed  CAS  Google Scholar 

  • Tamaru, Y., Takani, Y., Yoshida, T., and Sakamoto, T. 2005. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71, 7327–7333.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tang, E.P.Y., Tremblay, R., and Vincent, W.F. 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high latitude mat-formers adapted to low temperatures? J. Phycol. 33, 171–181.

    Article  Google Scholar 

  • Taton, A., Grubisic, S., Ertz, D., Hodgson, D.A., Picardi, R., Biondi, N., Tredici, M., Mainini, M., Losi, D., Marinelli, F., et al. 2006. Polyphasic study of Antarctic cyanobacterial strains. J. Phycol. 42, 1257–1270.

    Article  CAS  Google Scholar 

  • Thangaraj, B., Rajasekar, D.P., Vijayaraghavan, R., Garlapati, D., Devanesan, A.A., Lakshmanan, U., and Dharmar, P. 2017. Cytomorphological and nitrogen metabolic enzyme analysis of psychrophilic and mesophilic Nostoc sp.: a comparative outlook. 3 Biotech 7, 107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson, L.G., Mosley-Thompson, E., Davis, M.E., and Brecher, H.H. 2011. Tropical glaciers, recorders and indicators of climate change, are disappearing globally. Ann. Glaciol. 52, 23–34.

    Article  CAS  Google Scholar 

  • Vimercati, L., Hamsher, S., Schubert, Z., and Schmidt, S.K. 2016. Growth of a high-elevation Cryptococcus sp. during extreme freezethaw cycles. Extremophiles 20, 579–588.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Wang, Y., Shu, X., and Zhang, Q. 2013. Physiological responses of soil crust-forming cyanobacteria to diurnal temperature variation. J. Basic Microbiol. 53, 72–80.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer, A., Meneses, R.I., Rabatel, A., Soruco, A., Dangles, O., and Anthelme, F. 2018. Time lag between glacial retreat and upward migration alters tropical alpine communities. Persp. Plant Ecol. Evol. Systematics 30, 89–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K. Schmidt.

Additional information

Supplemental material for this article may be found at https://doi.org/www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, S.K., Vimercati, L. Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles. J Microbiol. 57, 243–251 (2019). https://doi.org/10.1007/s12275-019-8359-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8359-5

Keywords

Navigation