Skip to main content
Log in

Increased susceptibility against Cryptococcus neoformans of lupus mouse models (pristane-induction and FcGRIIb deficiency) is associated with activated macrophage, regardless of genetic background

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The severity of cryptococcosis in lupus from varying genetic-backgrounds might be different due to the heterogeneity of lupus-pathogenesis. This study explored cryptococcosis in lupus mouse models of pristane-induction (normal genetic-background) and FcGRIIb deficiency (genetic defect). Because the severity of lupus nephritis, as determined by proteinuria and serum creatinine, between pristane and FcGRIIb-/- mice were similar at 6-month-old, Cryptococcus neoformans was intravenously administered in 6-month-old mice and were age-matched with wild-type. Indeed, the cryptococcosis disease severity, as evaluated by mortality rate, internal-organ fungal burdens and serum cytokines, between pristane and FcGRIIb-/- mice was not different. However, the severity of cryptococcosis in wild-type was less severe than the lupus mice. On the other hand, phagocytosis activity of peritoneal macrophages from lupus mice (pristane and FcGRIIb-/-) was more predominant than the wild-type without the difference in macrophage killing-activity among these groups. In addition, the number of active T helper cells (Th-cell) in the spleen, including Th-cells with intracellular IFN-γ, from lupus mice (pristane and FcGRIIb-/-) was higher than wildtype. Moreover, these active Th-cells were even higher after 2 weeks of cryptococcal infection. These data support enhanced macrophage activation through prominent Th-cells in both lupus models. In conclusion, an increased susceptibility of cryptococcosis in both lupus models was independent to genetic background. This might due to Th-cell enhanced macrophage phagocytosis with the interference of macrophage killing activity from Cryptococcal immune-evasion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bermas, B.L., Petri, M., Goldman, D., Mittleman, B., Miller, M.W., Stocks, N.I., Via, C.S., and Shearer, G.M. 1994. T helper cell dysfunction in systemic lupus erythematosus (SLE): relation to disease activity. J. Clin. Immunol. 14, 169–177.

    Article  CAS  PubMed  Google Scholar 

  • Bolland, S. and Ravetch, J.V. 2000. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 13, 277–285.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan, K.L. and Doyle, H.A. 2000. Requirement for CD4+ T lymphocytes in host resistance against Cryptococcus neoformans in the central nervous system of immunized mice. Infect. Immun. 68, 456–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlier, C., Nielsen, K., Daou, S., Brigitte, M., Chretien, F., and Dromer, F. 2009. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect. Immun. 77, 120–127.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H.S., Tsai, W.P., Leu, H.S., Ho, H.H., and Liou, L.B. 2007. Invasive fungal infection in systemic lupus erythematosus: an analysis of 15 cases and a literature review. Rheumatology (Oxford) 46, 539–544.

    Article  CAS  Google Scholar 

  • Clatworthy, M.R., Willcocks, L., Urban, B., Langhorne, J., Williams, T.N., Peshu, N., Watkins, N.A., Floto, R.A., and Smith, K.G. 2007. Systemic lupus erythematosus-associated defects in the inhibitory receptor FcγRIIb reduce susceptibility to malaria. Proc. Natl. Acad. Sci. USA 104, 7169–7174.

    Article  CAS  PubMed  Google Scholar 

  • Crispin, J.C., Hedrich, C.M., and Tsokos, G.C. 2013. Gene-function studies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 9, 476–484.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rodas, R. and Zaragoza, O. 2012. Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans. FEMS Immunol. Med. Microbiol. 64, 147–161.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X.P., Wu, J.Q., Zhu, L.P., Wang, X., Xu, B., Wang, R.Y., Ou, X.T., and Weng, X.H. 2012. Association of Fcγ receptor IIB polymorphism with cryptococcal meningitis in HIV-uninfected Chinese patients. PLoS One 7, e42439.

    Article  CAS  Google Scholar 

  • Kasagi, S., Kawano, S., Okazaki, T., Honjo, T., Morinobu, A., Hatachi, S., Shimatani, K., Tanaka, Y., Minato, N., and Kumagai, S. 2010. Anti-programmed cell death 1 antibody reduces CD4+PD-1+ T cells and relieves the lupus-like nephritis of NZB/W F1 mice. J. Immunol. 184, 2337–2347.

    Article  CAS  PubMed  Google Scholar 

  • Koguchi, Y. and Kawakami, K. 2002. Cryptococcal infection and Th1-Th2 cytokine balance. Int. Rev. Immunol. 21, 423–438.

    Article  CAS  PubMed  Google Scholar 

  • Leiss, H., Niederreiter, B., Bandur, T., Schwarzecker, B., Bluml, S., Steiner, G., Ulrich, W., Smolen, J.S., and Stummvoll, G.H. 2013. Pristane-induced lupus as a model of human lupus arthritis: evolvement of autoantibodies, internal organ and joint inflammation. Lupus 22, 778–792.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., You, C., Liu, Q., and Liu, Y. 2010. Central nervous system cryptococcoma in immunocompetent patients: a short review illustrated by a new case. Acta Neurochir. (Wien) 152, 129–136.

    Article  Google Scholar 

  • Liu, T.B., Perlin, D.S., and Xue, C. 2012. Molecular mechanisms of cryptococcal meningitis. Virulence 3, 173–181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maglione, P.J., Xu, J., Casadevall, A., and Chan, J. 2008. Fcγ receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J. Immunol. 180, 3329–3338.

    Article  CAS  PubMed  Google Scholar 

  • Mody, C.H., Lipscomb, M.F., Street, N.E., and Toews, G.B. 1990. Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J. Immunol. 144, 1472–1477.

    CAS  PubMed  Google Scholar 

  • Ngamskulrungroj, P., Chang, Y., Sionov, E., and Kwon-Chung, K.J. 2012. The primary target organ of Cryptococcus gattii is different from that of Cryptococcus neoformans in a murine model. MBio 3, e00103–12.

    Article  CAS  Google Scholar 

  • Nicola, A.M. and Casadevall, A. 2012. In vitro measurement of phagocytosis and killing of Cryptococcus neoformans by macrophages. Methods Mol. Biol. 844, 189–197.

    Article  CAS  PubMed  Google Scholar 

  • Ondee, T., Surawut, S., Taratummarat, S., Hirankarn, N., Palaga, T., Pisitkun, P., Pisitkun, T., and Leelahavanichkul, A. 2017. Fc gamma receptor IIB deficient mice: A lupus model with increased endotoxin tolerance-related sepsis susceptibility. Shock 47, 743–752.

    Article  CAS  PubMed  Google Scholar 

  • Ray, A. and Dittel, B.N. 2010. Isolation of mouse peritoneal cavity cells. J. Vis. Exp. 35 1488.

    Google Scholar 

  • Reeves, W.H., Lee, P.Y., Weinstein, J.S., Satoh, M., and Lu, L. 2009. Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends Immunol. 30, 455–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohatgi, S. and Pirofski, L.A. 2015. Host immunity to Cryptococcus neoformans. Future Microbiol. 10, 565–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romani, L. 2004. Immunity to fungal infections. Nat. Rev. Immunol. 4, 1–23.

    Article  CAS  PubMed  Google Scholar 

  • Ropes, M.W. 1964. Observations on the natural course of disseminated lupus erythematosus. Medicine (Baltimore) 43, 387–391.

    Article  CAS  Google Scholar 

  • Rottman, J.B. and Willis, C.R. 2010. Mouse models of systemic lupus erythematosus reveal a complex pathogenesis. Vet. Pathol. 47, 664–676.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, M., Kumar, A., Kanwar, Y.S., and Reeves, W.H. 1995. Antinuclear antibody production and immune-complex glomerulonephritis in BALB/c mice treated with pristane. Proc. Natl. Acad. Sci. USA 92, 10934–10938.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, M. and Reeves, W.H. 1994. Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. J. Exp. Med. 180, 2341–2346.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K.G. and Clatworthy, M.R. 2010. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 10, 328–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surawut, S., Ondee, T., Taratummarat, S., Palaga, T., Pisitkun, P., Chindamporn, A., and Leelahavanichkul, A. 2017. The role of macrophages in the susceptibility of Fc gamma receptor IIb deficient mice to Cryptococcus neoformans. Sci. Rep. 7, 40006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsokos, G.C. 2011. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121.

    Article  CAS  PubMed  Google Scholar 

  • Vonk, A.G., Wieland, C.W., Netea, M.G., and Kullberg, B.J. 2002. Phagocytosis and intracellular killing of Candida albicans blastoconidia by neutrophils and macrophages: a comparison of different microbiological test systems. J. Microbiol. Methods 49, 55–62.

    Article  PubMed  Google Scholar 

  • Walenkamp, A.M., Scharringa, J., Schramel, F.M., Coenjaerts, F.E., and Hoepelman, I.M. 2000. Quantitative analysis of phagocytosis of Cryptococcus neoformans by adherent phagocytic cells by fluorescence multi-well plate reader. J. Microbiol. Methods 40, 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L.R., Barber, C.E., Johnson, A.S., and Barnabe, C. 2014. Invasive fungal disease in systemic lupus erythematosus: a systematic review of disease characteristics, risk factors, and prognosis. Semin. Arthritis Rheum. 44, 325–330.

    Article  CAS  PubMed  Google Scholar 

  • Zandman-Goddard, G. and Shoenfeld, Y. 2005. Infections and SLE. Autoimmunity 38, 473–485.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, Y., Li, M., Liu, J., Zhang, W., and Peng, F. 2015. Cryptococcal meningitis in Chinese patients with systemic lupus erythematosus. Clin. Neurol. Neurosurg. 131, 59–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asada Leelahavanichkul.

Additional information

Supplemental material for this article may be found at https://doi.org/www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surawut, S., Makjaroen, J., Thim-uam, A. et al. Increased susceptibility against Cryptococcus neoformans of lupus mouse models (pristane-induction and FcGRIIb deficiency) is associated with activated macrophage, regardless of genetic background. J Microbiol. 57, 45–53 (2019). https://doi.org/10.1007/s12275-019-8311-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8311-8

Keywords

Navigation