Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa



Bacterial biofilms remain a persistent threat to human healthcare due to their role in the development of antimicrobial resistance. To combat multi-drug resistant pathogens, it is crucial to enhance our understanding of not only the regulation of biofilm formation, but also its contribution to bacterial virulence. Iron acquisition lies at the crux of these two subjects. In this review, we discuss the role of iron acquisition in biofilm formation and how hosts impede this mechanism to defend against pathogens. We also discuss recent findings that suggest that biofilm formation can also have the reciprocal effect, influencing siderophore production and iron sequestration.


iron acquisition biofilm nutritional immunity siderophore exopolysaccharides Pseudomonas aeruginosa 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alhede, M., Bjarnsholt, T., Givskov, M., and Alhede, M. 2014. Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. Adv. Appl. Microbiol. 86, 1–40.PubMedCrossRefGoogle Scholar
  2. Anderson, G.G. and O’Toole, G.A. 2008. Innate and induced resistance mechanisms of bacterial biofilms. Curr. Top. Microbiol. Immunol. 322, 85–105.PubMedGoogle Scholar
  3. Ardehali, R., Shi, L., Janatova, J., Mohammad, S.F., and Burns, G.L. 2002. The effect of apo-transferrin on bacterial adhesion to biomaterials. Artif. Organs 26, 512–520.PubMedCrossRefGoogle Scholar
  4. Bachman, M.A., Oyler, J.E., Burns, S.H., Caza, M., Lepine, F., Dozois, C.M., and Weiser, J.N. 2011. Klebsiella pneumoniae yersinia-bactin promotes respiratory tract infection through evasion of lipocalin 2. Infect. Immun. 79, 3309–3316.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baldi, F., Marchetto, D., Battistel, D., Daniele, S., Faleri, C., De Castro, C., and Lanzetta, R. 2009. Iron-binding characterization and polysaccharide production by Klebsiella oxytoca strain isolated from mine acid drainage. J. Appl. Microbiol. 107, 1241–1250.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Banin, E., Brady, K.M., and Greenberg, E.P. 2006. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl. Environ. Microbiol. 72, 2064–2069.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Banin, E., Lozinski, A., Brady, K.M., Berenshtein, E., Butterfield, P.W., Moshe, M., Chevion, M., and Greenberg, E.P. 2008. The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent. Proc. Natl. Acad. Sci. USA 105, 16761–16766.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Banin, E., Vasil, M.L., and Greenberg, E.P. 2005. Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 102, 11076–11081.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beddek, A.J. and Schryvers, A.B. 2010. The lactoferrin receptor complex in Gram negative bacteria. Biometals 23, 377–386.PubMedCrossRefGoogle Scholar
  10. Berger, T., Togawa, A., Duncan, G.S., Elia, A.J., You-Ten, A., Wakeham, A., Fong, H.E., Cheung, C.C., and Mak, T.W. 2006. Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 103, 1834–1839.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bernardini, M.L., Sanna, M.G., Fontaine, A., and Sansonetti, P.J. 1993. OmpC is involved in invasion of epithelial cells by Shigella flexneri. Infect. Immun. 61, 3625–3635.PubMedPubMedCentralGoogle Scholar
  12. Boyce, J.R. and Miller, R.V. 1980. Effects of cations on stability of cystic fibrosis associated mucoid Pseudomonas. Lancet 2, 268–269.PubMedCrossRefGoogle Scholar
  13. Boyce, J.R. and Miller, R.V. 1982. Selection of nonmucoid derivatives of mucoid Pseudomonas aeruginosa is strongly influenced by the level of iron in the culture medium. Infect. Immun. 37, 695–701.PubMedPubMedCentralGoogle Scholar
  14. Bridier, A., Dubois-Brissonnet, F., Boubetra, A., Thomas, V., and Briandet, R. 2010. The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J. Microbiol. Methods 82, 64–70.PubMedCrossRefGoogle Scholar
  15. Cady, N.C., McKean, K.A., Behnke, J., Kubec, R., Mosier, A.P., Kasper, S.H., Burz, D.S., and Musah, R.A. 2012. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One 7, e38492.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Camilli, A. and Bassler, B.L. 2006. Bacterial small-molecule signaling pathways. Science 311, 1113–1116.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Carrano, C.J. and Raymond, K.N. 1979. Ferric ion sequestering agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. J. Am. Chem. Soc. 101, 5401–5404.CrossRefGoogle Scholar
  18. Carver, P.L. 2018. The battle for iron between humans and microbes. Curr. Med. Chem. 25, 85–96.PubMedCrossRefGoogle Scholar
  19. Cescau, S., Cwerman, H., Letoffe, S., Delepelaire, P., Wandersman, C., and Biville, F. 2007. Heme acquisition by hemophores. Biometals 20, 603–613.PubMedCrossRefGoogle Scholar
  20. Chitambar, C.R. and Narasimhan, J. 1991. Targeting iron-dependent DNA synthesis with gallium and transferrin-gallium. Pathobiology 59, 3–10.PubMedCrossRefGoogle Scholar
  21. Colvin, K.M., Gordon, V.D., Murakami, K., Borlee, B.R., Wozniak, D.J., Wong, G.C., and Parsek, M.R. 2011. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 7, e1001264.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Colvin, K.M., Irie, Y., Tart, C.S., Urbano, R., Whitney, J.C., Ryder, C., Howell, P.L., Wozniak, D.J., and Parsek, M.R. 2012. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 14, 1913–1928.PubMedCrossRefGoogle Scholar
  23. Costerton, J.W., Stewart, P.S., and Greenberg, E.P. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.PubMedCrossRefGoogle Scholar
  24. De Philippis, R., Colica, G., and Micheletti, E. 2011. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl. Microbiol. Biotechnol. 92, 697–708.PubMedCrossRefGoogle Scholar
  25. Donlan, R.M. 2002. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881–890.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Drenkard, E. and Ausubel, F.M. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740–743.PubMedCrossRefGoogle Scholar
  27. Ferreira, J.A., Penner, J.C., Moss, R.B., Haagensen, J.A., Clemons, K.V., Spormann, A.M., Nazik, H., Cohen, K., Banaei, N., Carolino, E., et al. 2015. Inhibition of Aspergillus fumigatus and its biofilm by Pseudomonas aeruginosa is dependent on the source, phenotype and growth conditions of the bacterium. PLoS One 10, e0134692.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fischbach, M.A., Lin, H., Zhou, L., Yu, Y., Abergel, R.J., Liu, D.R., Raymond, K.N., Wanner, B.L., Strong, R.K., Walsh, C.T., et al. 2006. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl. Acad. Sci. USA 103, 16502–16507.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Flemming, H.C. and Wingender, J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633.PubMedCrossRefGoogle Scholar
  30. Flo, T.H., Smith, K.D., Sato, S., Rodriguez, D.J., Holmes, M.A., Strong, R.K., Akira, S., and Aderem, A. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921.PubMedCrossRefGoogle Scholar
  31. Franklin, M.J., Nivens, D.E., Weadge, J.T., and Howell, P.L. 2011. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front. Microbiol. 2, 167.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Friedman, L. and Kolter, R. 2004. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 186, 4457–4465.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gilbert, P., Jones, M.V., Allison, D.G., Heys, S., Maira, T., and Wood, P. 1998. The use of poloxamer hydrogels for the assessment of biofilm susceptibility towards biocide treatments. J. Appl. Microbiol. 85, 985–990.PubMedCrossRefGoogle Scholar
  34. Goetz, D.H., Holmes, M.A., Borregaard, N., Bluhm, M.E., Raymond, K.N., and Strong, R.K. 2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043.PubMedCrossRefGoogle Scholar
  35. Goodman, A.L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R.S., and Lory, S. 2004. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7, 745–754.PubMedCrossRefGoogle Scholar
  36. Gupta, P. and Diwan, B. 2017. Bacterial exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. (Amst) 13, 58–71.CrossRefGoogle Scholar
  37. Guterman, S.K., Morris, P.M., and Tannenberg, W.J. 1978. Feasibility of enterochelin as an iron-chelating drug: studies with human serum and a mouse model system. Gen. Pharmacol. 9, 123–127.PubMedCrossRefGoogle Scholar
  38. Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108.PubMedCrossRefGoogle Scholar
  39. Harris, W.R., Carrano, C.J., and Raymond, K.N. 1979. Isolation, characterization, and formation constants of ferric aerobactin. J. Am. Chem. Soc. 101, 2722–2727.CrossRefGoogle Scholar
  40. Hentzer, M., Wu, H., Andersen, J.B., Riedel, K., Rasmussen, T.B., Bagge, N., Kumar, N., Schembri, M.A., Song, Z., Kristoffersen, P., et al. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22, 3803–3815.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hoiby, N., Krogh Johansen, H., Moser, C., Song, Z., Ciofu, O., and Kharazmi, A. 2001. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect. 3, 23–35.PubMedCrossRefGoogle Scholar
  42. Hood, M.I. and Skaar, E.P. 2012. Nutritional immunity: transition metals at the pathogen-host interface. Nat. Rev. Microbiol. 10, 525–537.PubMedCrossRefGoogle Scholar
  43. Huang, W. and Wilks, A. 2017. Extracellular heme uptake and the challenge of bacterial cell membranes. Annu. Rev. Biochem. 86, 799–823.PubMedCrossRefGoogle Scholar
  44. Hunter, R.C., Asfour, F., Dingemans, J., Osuna, B.L., Samad, T., Malfroot, A., Cornelis, P., and Newman, D.K. 2013. Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways. MBio 4, e00557–13.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Irie, Y., Borlee, B.R., O’Connor, J.R., Hill, P.J., Harwood, C.S., Wozniak, D.J., and Parsek, M.R. 2012. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 109, 20632–20636.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Javvadi, S., Pandey, S.S., Mishra, A., Pradhan, B.B., and Chatterjee, S. 2018. Bacterial cyclic ß-(1,2)-glucans sequester iron to protect against iron-induced toxicity. EMBO Rep. 19, 172–186.PubMedCrossRefGoogle Scholar
  47. Jayaraman, R. 2008. Bacterial persistence: some new insights into an old phenomenon. J. Biosci. 33, 795–805.PubMedCrossRefGoogle Scholar
  48. Jensen, E.T., Kharazmi, A., Lam, K., Costerton, J.W., and Hoiby, N. 1990. Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect. Immun. 58, 2383–2385.PubMedPubMedCentralGoogle Scholar
  49. Kamiya, H., Ehara, T., and Matsumoto, T. 2012. Inhibitory effects of lactoferrin on biofilm formation in clinical isolates of Pseudomonas aeruginosa. J. Infect. Chemother. 18, 47–52.PubMedCrossRefGoogle Scholar
  50. Kaneko, Y., Thoendel, M., Olakanmi, O., Britigan, B.E., and Singh, P.K. 2007. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Invest. 117, 877–888.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kang, D., Kirienko, D.R., Webster, P., Fisher, A.L., and Kirienko, N.V. 2018. Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response. Virulence 9, 804–817.PubMedGoogle Scholar
  52. Kang, D. and Kirienko, N.V. 2017. High-throughput genetic screen reveals that early attachment and biofilm formation are necessary for full pyoverdine production by Pseudomonas aeruginosa. Front. Microbiol. 8, 1707.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kang, D., Turner, K.E., and Kirienko, N.V. 2017. PqsA promotes pyoverdine production via biofilm formation. Pathogens 7, 3.PubMedCentralCrossRefGoogle Scholar
  54. Kelson, A.B., Carnevali, M., and Truong-Le, V. 2013. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms. Curr. Opin. Pharmacol. 13, 707–716.PubMedCrossRefGoogle Scholar
  55. Kester, J.C. and Fortune, S.M. 2014. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit. Rev. Biochem. Mol. Biol. 49, 91–101.PubMedCrossRefGoogle Scholar
  56. Kim, S.K. and Lee, J.H. 2016. Biofilm dispersion in Pseudomonas aeruginosa. J. Microbiol. 54, 71–85.PubMedCrossRefGoogle Scholar
  57. Kirienko, N.V., Ausubel, F.M., and Ruvkun, G. 2015. Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 112, 1821–1826.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kirienko, N.V., Kirienko, D.R., Larkins-Ford, J., Wählby, C., Ruvkun, G., and Ausubel, F.M. 2013. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 13, 406–416.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kirov, S.M., Webb, J.S., O’May, C.Y., Reid, D.W., Woo, J.K., Rice, S.A., and Kjelleberg, S. 2007. Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 153, 3264–3274.PubMedCrossRefGoogle Scholar
  60. Komor, U., Bielecki, P., Loessner, H., Rohde, M., Wolf, K., Westphal, K., Weiss, S., and Haussler, S. 2012. Biofilm formation by Pseudomonas aeruginosa in solid murine tumors - a novel model system. Microbes Infect. 14, 951–958.PubMedCrossRefGoogle Scholar
  61. Kostenko, V., Ceri, H., and Martinuzzi, R.J. 2007. Increased tolerance of Staphylococcus aureus to vancomycin in viscous media. FEMS Immun. Med. Microbiol. 51, 277–288.CrossRefGoogle Scholar
  62. Kragh, K.N., Alhede, M., Rybtke, M., Stavnsberg, C., Jensen, P.O., Tolker-Nielsen, T., Whiteley, M., and Bjarnsholt, T. 2018. Inoculation method could impact the outcome of microbiological experiments. Appl. Environ. Microbiol. 84, e02264–17.Google Scholar
  63. Kvach, J.T., Wiles, T.I., Mellencamp, M.W., and Kochan, I. 1977. Use of transferrin-iron enterobactin complexes as the source of iron by serum-exposed bacteria. Infect. Immun. 18, 439–445.PubMedPubMedCentralGoogle Scholar
  64. Lamont, I.L., Beare, P.A., Ochsner, U., Vasil, A.I., and Vasil, M.L. 2002. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 99, 7072–7077.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Leid, J.G., Willson, C.J., Shirtliff, M.E., Hassett, D.J., Parsek, M.R., and Jeffers, A.K. 2005. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gammamediated macrophage killing. J. Immun. 175, 7512–7518.PubMedCrossRefGoogle Scholar
  66. Li, X.H. and Lee, J.H. 2017. Antibiofilm agents: A new perspective for antimicrobial strategy. J. Microbiol. 55, 753–766.PubMedCrossRefGoogle Scholar
  67. Ma, L., Conover, M., Lu, H., Parsek, M.R., Bayles, K., and Wozniak, D.J. 2009. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 5, e1000354.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ma, L., Jackson, K.D., Landry, R.M., Parsek, M.R., and Wozniak, D.J. 2006. Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J. Bacteriol. 188, 8213–8221.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mah, T.F. and O’Toole, G.A. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39.PubMedCrossRefGoogle Scholar
  70. Meyer, J.M., Neely, A., Stintzi, A., Georges, C., and Holder, I.A. 1996. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 64, 518–523.PubMedPubMedCentralGoogle Scholar
  71. Mikkelsen, H., Sivaneson, M., and Filloux, A. 2011. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ. Microbiol. 13, 1666–1681.PubMedCrossRefGoogle Scholar
  72. Miller, R.V. and Rubero, V.J. 1984. Mucoid conversion by phages of Pseudomonas aeruginosa strains from patients with cystic fibrosis. J. Clin. Microbiol. 19, 717–719.PubMedPubMedCentralGoogle Scholar
  73. Minandri, F., Imperi, F., Frangipani, E., Bonchi, C., Visaggio, D., Facchini, M., Pasquali, P., Bragonzi, A., and Visca, P. 2016. Role of iron uptake systems in Pseudomonas aeruginosa virulence and airway infection. Infect. Immun. 84, 2324–2335.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mohite, B.V., Koli, S.H., Narkhede, C.P., Patil, S.N., and Patil, S.V. 2017. Prospective of microbial exopolysaccharide for heavy metal exclusion. Appl. Biochem. Biotechnol. 183, 582–600.PubMedCrossRefGoogle Scholar
  75. Moppert, X., Le Costaouec, T., Raguenes, G., Courtois, A., Simon- Colin, C., Crassous, P., Costa, B., and Guezennec, J. 2009. Investigations into the uptake of copper, iron and selenium by a highly sulphated bacterial exopolysaccharide isolated from microbial mats. J. Ind. Microbiol. Biotechnol. 36, 599–604.PubMedCrossRefGoogle Scholar
  76. Moradali, M.F., Ghods, S., and Rehm, B.H. 2017. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 7, 39.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Moreau-Marquis, S., Bomberger, J.M., Anderson, G.G., Swiatecka- Urban, A., Ye, S., O’Toole, G.A., and Stanton, B.A. 2008. The ?F508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L25–L37.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Moreau-Marquis, S., O’Toole, G.A., and Stanton, B.A. 2009. Tobra mycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am. J. Respir. Cell Mol. Biol. 41, 305–313.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mulcahy, H., Charron-Mazenod, L., and Lewenza, S. 2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 4, e1000213.PubMedPubMedCentralCrossRefGoogle Scholar
  80. O’Loughlin, C.T., Miller, L.C., Siryaporn, A., Drescher, K., Semmelhack, M.F., and Bassler, B.L. 2013. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl. Acad. Sci. USA 110, 17981–17986.PubMedPubMedCentralCrossRefGoogle Scholar
  81. O’May, C.Y., Sanderson, K., Roddam, L.F., Kirov, S.M., and Reid, D.W. 2009. Iron-binding compounds impair Pseudomonas aeruginosa biofilm formation, especially under anaerobic conditions. J. Med. Microbiol. 58, 765–773.PubMedCrossRefGoogle Scholar
  82. Oglesby-Sherrouse, A.G., Djapgne, L., Nguyen, A.T., Vasil, A.I., and Vasil, M.L. 2014. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa. Pathog. Dis. 70, 307–320.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Palmer, L.D. and Skaar, E.P. 2016. Transition metals and virulence in bacteria. Annu. Rev. Genet. 50, 67–91.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Parsek, M.R. and Greenberg, E.P. 2000. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA 97, 8789–8793.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Peek, M.E., Bhatnagar, A., McCarty, N.A., and Zughaier, S.M. 2012. Pyoverdine, the major siderophore in Pseudomonas aeruginosa, evades NGAL recognition. Interdiscip. Perspect. Infect. Dis. 2012, 843509.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Penner, J.C., Ferreira, J.A., Secor, P.R., Sweere, J.M., Birukova, M.K., Joubert, L.M., Haagensen, J.A., Garcia, O., Malkovskiy, A.V., Kaber, G., et al. 2016. Pf4 bacteriophage produced by Pseudomonas aeruginosa inhibits Aspergillus fumigatus metabolism via iron sequestration. Microbiology 162, 1583–1594.PubMedCrossRefGoogle Scholar
  87. Petrova, O.E. and Sauer, K. 2009. A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog. 5, e1000668.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Peyton, B.M. 1996. Effects of shear stress and substrate loading rate on Pseudomonas aeruginosa biofilm thickness and density. Wat. Res. 30, 29–36.CrossRefGoogle Scholar
  89. Peyton, B.M. and Characklis, W.G. 1993. A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment. Biotechnol. Bioeng. 41, 728–735.PubMedCrossRefGoogle Scholar
  90. Pogoutse, A.K. and Moraes, T.F. 2017. Iron acquisition through the bacterial transferrin receptor. Crit. Rev. Biochem. Mol. Biol. 52, 314–326.PubMedCrossRefGoogle Scholar
  91. Rashid, M.H., Rumbaugh, K., Passador, L., Davies, D.G., Hamood, A.N., Iglewski, B.H., and Kornberg, A. 2000. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 97, 9636–9641.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rasmussen, B. 2000. Filamentous microfossils in a 3,235-millionyear- old volcanogenic massive sulphide deposit. Nature 405, 676–679.PubMedCrossRefGoogle Scholar
  93. Rice, S.A., Tan, C.H., Mikkelsen, P.J., Kung, V., Woo, J., Tay, M., Hauser, A., McDougald, D., Webb, J.S., and Kjelleberg, S. 2009. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J. 3, 271–282.PubMedCrossRefGoogle Scholar
  94. Rittman, B.E. 1982. The effect of shear stress on biofilm loss rate. Biotechnol. Bioeng. 24, 501–506.PubMedCrossRefGoogle Scholar
  95. Ruhs, P.A., Boni, L., Fuller, G.G., Inglis, R.F., and Fischer, P. 2013. In situ quantification of the interfacial rheological response of bacterial biofilms to environmental stimuli. PLoS One 8, e78524.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sakuragi, Y. and Kolter, R. 2007. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J. Bacteriol. 189, 5383–5386.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sauer, K., Camper, A.K., Ehrlich, G.D., Costerton, J.W., and Davies, D.G. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154.PubMedPubMedCentralCrossRefGoogle Scholar
  98. She, P., Chen, L., Qi, Y., Xu, H., Liu, Y., Wang, Y., Luo, Z., and Wu, Y. 2016. Effects of human serum and apo-transferrin on Staphylococcus epidermidis RP62A biofilm formation. Microbiologyopen 5, 957–966.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shih, P.C. and Huang, C.T. 2002. Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J. Antimicrob. Chemother. 49, 309–314.PubMedCrossRefGoogle Scholar
  100. Singh, P.K., Parsek, M.R., Greenberg, E.P., and Welsh, M.J. 2002. A component of innate immunity prevents bacterial biofilm development. Nature 417, 552–555.PubMedCrossRefGoogle Scholar
  101. Singh, P.K., Schaefer, A.L., Parsek, M.R., Moninger, T.O., Welsh, M.J., and Greenberg, E.P. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764.PubMedCrossRefGoogle Scholar
  102. Skaar, E.P. 2010. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 6, e1000949.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Stewart, P.S. 1996. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother. 40, 2517–2522.PubMedPubMedCentralGoogle Scholar
  104. Stoodley, P., Sauer, K., Davies, D.G., and Costerton, J.W. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209.PubMedCrossRefGoogle Scholar
  105. Takase, H., Nitanai, H., Hoshino, K., and Otani, T. 2000. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect. Immun. 68, 1834–1839.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Terry, J.M., Pina, S.E., and Mattingly, S.J. 1992. Role of energy metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype. Infect. Immun. 60, 1329–1335.PubMedPubMedCentralGoogle Scholar
  107. Tidmarsh, G.F., Klebba, P.E., and Rosenberg, L.T. 1983. Rapid release of iron from ferritin by siderophores. J. Inorg. Biochem. 18, 161–168.PubMedCrossRefGoogle Scholar
  108. Valdebenito, M., Muller, S.I., and Hantke, K. 2007. Special conditions allow binding of the siderophore salmochelin to siderocalin (NGAL-lipocalin). FEMS Microbiol. Lett. 277, 182–187.PubMedCrossRefGoogle Scholar
  109. Visaggio, D., Pasqua, M., Bonchi, C., Kaever, V., Visca, P., and Imperi, F. 2015. Cell aggregation promotes pyoverdine-dependent iron uptake and virulence in Pseudomonas aeruginosa. Front. Microbiol. 6, 902.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Vogeleer, P., Tremblay, Y.D., Mafu, A.A., Jacques, M., and Harel, J. 2014. Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front. Microbiol. 5, 317.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wakabayashi, H., Yamauchi, K., Kobayashi, T., Yaeshima, T., Iwatsuki, K., and Yoshie, H. 2009. Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia. Antimicrob. Agents Chemother. 53, 3308–3316.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Webb, J.S., Lau, M., and Kjelleberg, S. 2004. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186, 8066–8073.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Webb, J.S., Thompson, L.S., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., Givskov, M., and Kjelleberg, S. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185, 4585–4592.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., and Greenberg, E.P. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.PubMedCrossRefGoogle Scholar
  115. Winstanley, C., O’Brien, S., and Brockhurst, M.A. 2016. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 24, 327–337.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wirtanen, G., Salo, S., Allison, D.G., Mattila-Sandholm, T., and Gilbert, P. 1998. Performance evaluation of disinfectant formulations using poloxamer-hydrogel biofilm-constructs. J. Appl. Microbiol. 85, 965–971.PubMedCrossRefGoogle Scholar
  117. Wolz, C., Hohloch, K., Ocaktan, A., Poole, K., Evans, R.W., Rochel, N., Albrecht-Gary, A.M., Abdallah, M.A., and Döring, G. 1994. Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa. Infect. Immun. 62, 4021–4027.PubMedPubMedCentralGoogle Scholar
  118. Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K.C., Birrer, P., Bellon, G., Berger, J., Weiss, T., et al. 2002. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. 109, 317–325.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Xiao, R. and Kisaalita, W.S. 1997. Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin. Microbiology 143 (Pt 7), 2509–2515.PubMedCrossRefGoogle Scholar
  120. Yoon, S.S., Hennigan, R.F., Hilliard, G.M., Ochsner, U.A., Parvatiyar, K., Kamani, M.C., Allen, H.L., DeKievit, T.R., Gardner, P.R., Schwab, U., et al. 2002. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev. Cell. 3, 593–603.PubMedCrossRefGoogle Scholar
  121. Yu, S., Wei, Q., Zhao, T., Guo, Y., and Ma, L.Z. 2016. A survival strategy for Pseudomonas aeruginosa that uses exopolysaccharides to sequester and store iron to stimulate Psl-dependent biofilm formation. Appl. Environ. Microbiol. 82, 6403–6413.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of BiosciencesRice UniversityHoustonUSA

Personalised recommendations