Advertisement

Journal of Microbiology

, Volume 56, Issue 7, pp 493–499 | Cite as

Halomonas tibetensis sp. nov., isolated from saline lakes on Tibetan Plateau

  • Hui-bin Lu
  • Peng Xing
  • Lei Zhai
  • Dorji Phurbu
  • Qian Tang
  • Qing-long Wu
Article
  • 54 Downloads

Abstract

Strains pyc13T and ZGT13 were isolated from Lake Pengyan and Lake Zigetang on Tibetan Plateau, respectively. Both strains were Gram-negative, catalase- and oxidase-positive, aerobic, rod-shaped, nonmotile, and nonflagellated bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains pyc13T and ZGT13 belong to the genus Halomonas, with Halomonas alkalicola 56-L4-10aEnT as their closest neighbor, showing 97.4% 16S rRNA gene sequence similarity. The predominant respiratory quinone of both strains was Q-9, with Q-8 as a minor component. The major fatty acids of both strains were C18:1ω6c/C18:1ω7c, C16:1ω6c/C16:1ω7c, C16:0, and C12:0 3OH. The polar lipids of both strains consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, glycolipid, phospholipids of unknown structure containing glucosamine, and unidentified phospholipids. The DNA G + C content of pyc13T and ZGT13 were 62.6 and 63.4 mol%, respectively. The DNA-DNA hybridization values of strain pyc13T were 34, 41, 61, 35, and 35% with the reference strains H. alkalicola 56-L4-10aEnT, H. sediminicola CPS11T, H. mongoliensis Z-7009T, H. ventosae Al12T, and H. fontilapidosi 5CRT, respectively. Phenotypic, biochemical, genotypic, and DNA-DNA hybridization data showed that strains pyc13T and ZGT13 represent a new species within the genus Halomonas, for which the name H. tibetensis sp. nov. is proposed. The type strain is pyc13T (= CGMCC 1.15949T = KCTC 52660T).

Keywords

Halomonas saline lake polyphasic taxonomy Tibetan Plateau 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8076_MOESM1_ESM.pdf (468 kb)
Supplementary material, approximately 465 KB.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990 Basic local alignment search tool. J. Mol. Biol. 215, 403–410CrossRefPubMedGoogle Scholar
  2. Arahal, D.R., Vreeland, R.H., Litchfield, C.D., Mormile, M.R., Tindall, B.J., Oren, A., Bejar, V., Quesada, E., and Ventosa, A. 2007 Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int. J. Syst. Evol. Microbiol. 57, 2436–2446CrossRefPubMedGoogle Scholar
  3. Boltyanskaya, Y.V., Kevbrin, V.V., Lysenko, A.M., Kolganova, T.V., Tourova, T.P., Osipov, G.A., and Zhilina, T.N. 2007 Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes. Microbiology 76, 739–747.Google Scholar
  4. de la Haba, R.R., Marquez, M.C., Papke, R.T., and Ventosa, A. 2012 Multilocus sequence analysis of the family Halomonadaceae. Int. J. Syst. Evol. Microbiol. 62, 520–538CrossRefPubMedGoogle Scholar
  5. De Ley, J., Cattoir, H., and Reynaerts, A. 1970 The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12, 133–142CrossRefPubMedGoogle Scholar
  6. Dobson, S.J. and Franzmann, P.D. 1996 Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendric. 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbon. 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int. J. Syst. Bacteriol. 46, 550–558CrossRefGoogle Scholar
  7. Dong, X.Z. and Cai, M.Y. 2001 Determinative manual for routine bacteriology. Beijing Scientific Press, Beijing, China.Google Scholar
  8. Felsenstein, J. 1981 Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376CrossRefPubMedGoogle Scholar
  9. Gonzalez-Domenech, C.M., Martinez-Checa, F., Quesada, E., and Bejar, V. 2009 Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int. J. Syst. Evol. Microbiol. 59, 1290–1296CrossRefPubMedGoogle Scholar
  10. Guzman, D., Quillaguaman, J., Munoz, M., and Hatti-Kaul, R. 2010 Halomonas andesensis sp. nov., a moderate halophile isolated from the saline lake Laguna Colorada in Bolivia. Int. J. Syst. Evol. Microbiol. 60, 749–753PubMedGoogle Scholar
  11. Heyrman, J. 2002 Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int. J. Syst. Evol. Microbiol. 52, 2049–2054Google Scholar
  12. Kaye, J.Z., Marquez, M.C., Ventosa, A., and Baross, J.A. 2004 Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int. J. Syst. Evol. Microbiol. 54, 499–511PubMedGoogle Scholar
  13. Kim, K.K., Lee, K.C., Oh, H.M., and Lee, J.S. 2010 Halomonas stevensii sp. nov., Halomonas hamiltonii sp. nov. and Halomonas johnsoniae sp. nov., isolated from a renal care centre. Int. J. Syst. Evol. Microbiol. 60, 369–377PubMedGoogle Scholar
  14. Kimura, M. 1979 The neutral theory of molecular evolution. Sci. Am. 241, 98–100, 102, 108CrossRefPubMedGoogle Scholar
  15. Kluge, A.G. and Farris, J.S. 1969 Quantitative phyletics and the evolution of Anurans. Syst. Zool. 18, 1–32CrossRefGoogle Scholar
  16. Kuykendall, L.D., Roy, M.A., O'Neill, J.J., and Devine, T.E. 1988 Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol. 38, 358–361CrossRefGoogle Scholar
  17. Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–175 In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid sequencing techniques in bacterial systematics, Wiley, New York, USA.Google Scholar
  18. Lee, J.C., Kim, S.J., and Whang, K.S. 2016 Halomonas sediminicola sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Int. J. Syst. Evol. Microbiol. 66, 3865–3872PubMedGoogle Scholar
  19. Marmur, J. and Doty, P. 1962 Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5, 109–118CrossRefPubMedGoogle Scholar
  20. Martinez-Canovas, M.J., Quesada, E., Llamas, I., and Bejar, V. 2004 Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 54, 733–737CrossRefPubMedGoogle Scholar
  21. Mata, J.A., Martinez-Canovas, J., Quesada, E., and Bejar, V. 2002 A detailed phenotypic characterisation of the type strains of Halomonas species. Syst. Appl. Microbiol. 25, 360–375CrossRefPubMedGoogle Scholar
  22. Minnikin, D.E., O'Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984 An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241CrossRefGoogle Scholar
  23. Qu, L., Lai, Q., Zhu, F., Hong, X., Zhang, J., Shao, Z., and Sun, X. 2011 Halomonas daqiaonensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from a littoral saltern. Int. J. Syst. Evol. Microbiol. 61, 1612–1616PubMedGoogle Scholar
  24. Quillaguaman, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M.T., and Delgado, O. 2004 Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int. J. Syst. Evol. Microbiol. 54, 721–725PubMedGoogle Scholar
  25. Saitou, N. and Nei, M. 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425PubMedGoogle Scholar
  26. Sasser, M. 1990 Identification of bacteria through fatty acid analysis, pp. 199–204 In Klement, Z., Rudolph, K., and Sands, D.C. (eds.), Methods in Phytobacteriology, Akademiai Kaido, Budapest, Hungary.Google Scholar
  27. Sehgal, S.N. and Gibbons, N.E. 1960 Effect of some metal ions on the growth of Halobacterium cutirubrum. Can. J. Microbiol. 6, 165–169CrossRefPubMedGoogle Scholar
  28. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013 MEGA6: molecular evolutionary genetics analysis version 6.0 Mol. Biol. Evol. 30, 2725–2729CrossRefGoogle Scholar
  29. Tang, X., Zhai, L., Lin, Y., Yao, S., Wang, L., Ge, Y., Liu, Y., Zhang, X., Zhang, T., Zhang, L., et al. 2017 Halomonas alkalicola sp. nov., isolated from a household product plant. Int. J. Syst. Evol. Microbiol. 67, 1546–1550PubMedGoogle Scholar
  30. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997 The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  31. Tindall, B.J. 1990 Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 66, 199–202CrossRefGoogle Scholar
  32. Vreeland, R.H., Litchfield, C.D., Martin, E.L., and Elliot, E. 1980 Halomonas elongata, a new genus and species of extremely salttolerant bacteria. Int. J. Syst. Bacteriol. 30, 485–495CrossRefGoogle Scholar
  33. Wang, C.Y., Wu, S.J., Ng, C.C., Tzeng, W.S., and Shyu, Y.T. 2012 Halomonas beimenensis sp. nov., isolated from an abandoned saltern. Int. J. Syst. Evol. Microbiol. 62, 3013–3017CrossRefPubMedGoogle Scholar
  34. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murry, R.G.E., Stackebrandt, E., et al. 1987 Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464CrossRefGoogle Scholar
  35. Wu, Y.H., Xu, X.W., Huo, Y.Y., Zhou, P., Zhu, X.F., Zhang, H.B., and Wu, M. 2008 Halomonas caseinilytica sp. nov., a halophilic bacterium isolated from a saline lake on the Qinghai-Tibet Plateau, China. Int. J. Syst. Evol. Microbiol. 58, 1259–1262PubMedGoogle Scholar
  36. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2016 Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617Google Scholar
  37. Zhong, Z.P., Liu, Y., Wang, F., Zhou, Y.G., Liu, H.C., and Liu, Z.P. 2016 Lacimicrobium alkaliphilum gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from a salt lake. Int. J. Syst. Evol. Microbiol. 66, 422–429Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Hui-bin Lu
    • 1
    • 2
  • Peng Xing
    • 1
  • Lei Zhai
    • 3
  • Dorji Phurbu
    • 4
  • Qian Tang
    • 1
    • 2
  • Qing-long Wu
    • 1
    • 5
  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China
  3. 3.China Center of Industrial Culture Collection (CICC), China National ResearchInstitute of Food and Fermentation IndustriesBeijingP. R. China
  4. 4.Tibet Plateau Institute of BiologyLhasaP. R. China
  5. 5.Sino-Danish Centre for Education and ResearchUniversity of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations