Halomonas tibetensis sp. nov., isolated from saline lakes on Tibetan Plateau

  • Hui-bin Lu
  • Peng Xing
  • Lei Zhai
  • Dorji Phurbu
  • Qian Tang
  • Qing-long Wu
Article

Abstract

Strains pyc13T and ZGT13 were isolated from Lake Pengyan and Lake Zigetang on Tibetan Plateau, respectively. Both strains were Gram-negative, catalase- and oxidase-positive, aerobic, rod-shaped, nonmotile, and nonflagellated bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains pyc13T and ZGT13 belong to the genus Halomonas, with Halomonas alkalicola 56-L4-10aEnT as their closest neighbor, showing 97.4% 16S rRNA gene sequence similarity. The predominant respiratory quinone of both strains was Q-9, with Q-8 as a minor component. The major fatty acids of both strains were C18:1ω6c/C18:1ω7c, C16:1ω6c/C16:1ω7c, C16:0, and C12:0 3OH. The polar lipids of both strains consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, glycolipid, phospholipids of unknown structure containing glucosamine, and unidentified phospholipids. The DNA G + C content of pyc13T and ZGT13 were 62.6 and 63.4 mol%, respectively. The DNA-DNA hybridization values of strain pyc13T were 34, 41, 61, 35, and 35% with the reference strains H. alkalicola 56-L4-10aEnT, H. sediminicola CPS11T, H. mongoliensis Z-7009T, H. ventosae Al12T, and H. fontilapidosi 5CRT, respectively. Phenotypic, biochemical, genotypic, and DNA-DNA hybridization data showed that strains pyc13T and ZGT13 represent a new species within the genus Halomonas, for which the name H. tibetensis sp. nov. is proposed. The type strain is pyc13T (= CGMCC 1.15949T = KCTC 52660T).

Keywords

Halomonas saline lake polyphasic taxonomy Tibetan Plateau 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8076_MOESM1_ESM.pdf (2.3 mb)
Supplementary material, approximately 2.31 MB.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.CrossRefPubMedGoogle Scholar
  2. Arahal, D.R., Vreeland, R.H., Litchfield, C.D., Mormile, M.R., Tindall, B.J., Oren, A., Bejar, V., Quesada, E., and Ventosa, A. 2007. Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int. J. Syst. Evol. Microbiol. 57, 2436–2446.CrossRefPubMedGoogle Scholar
  3. Boltyanskaya, Y.V., Kevbrin, V.V., Lysenko, A.M., Kolganova, T.V., Tourova, T.P., Osipov, G.A., and Zhilina, T.N. 2007. Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes. Microbiology 76, 739–747.CrossRefGoogle Scholar
  4. de la Haba, R.R., Marquez, M.C., Papke, R.T., and Ventosa, A. 2012. Multilocus sequence analysis of the family Halomonadaceae. Int. J. Syst. Evol. Microbiol. 62, 520–538.CrossRefPubMedGoogle Scholar
  5. De Ley, J., Cattoir, H., and Reynaerts, A. 1970. The quantitative mea surement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12, 133–142.CrossRefPubMedGoogle Scholar
  6. Dobson, S.J. and Franzmann, P.D. 1996. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int. J. Syst. Bacteriol. 46, 550–558.CrossRefGoogle Scholar
  7. Dong, X.Z. and Cai, M.Y. 2001. Determinative manual for routine bacteriology. Beijing Scientific Press, Beijing, China.Google Scholar
  8. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefPubMedGoogle Scholar
  9. Gonzalez-Domenech, C.M., Martinez-Checa, F., Quesada, E., and Bejar, V. 2009. Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int. J. Syst. Evol. Microbiol. 59, 1290–1296.CrossRefPubMedGoogle Scholar
  10. Guzman, D., Quillaguaman, J., Munoz, M., and Hatti-Kaul, R. 2010. Halomonas andesensis sp. nov., a moderate halophile isolated from the saline lake Laguna Colorada in Bolivia. Int. J. Syst. Evol. Microbiol. 60, 749–753.CrossRefPubMedGoogle Scholar
  11. Heyrman, J. 2002. Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint- Catherine chapel (Castle Herberstein, Austria). Int. J. Syst. Evol. Microbiol. 52, 2049–2054.PubMedGoogle Scholar
  12. Kaye, J.Z., Marquez, M.C., Ventosa, A., and Baross, J.A. 2004. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int. J. Syst. Evol. Microbiol. 54, 499–511.CrossRefPubMedGoogle Scholar
  13. Kim, K.K., Lee, K.C., Oh, H.M., and Lee, J.S. 2010. Halomonas stevensii sp. nov., Halomonas hamiltonii sp. nov. and Halomonas johnsoniae sp. nov., isolated from a renal care centre. Int. J. Syst. Evol. Microbiol. 60, 369–377.CrossRefPubMedGoogle Scholar
  14. Kimura, M. 1979. The neutral theory of molecular evolution. Sci. Am. 241, 98–100, 102, 108.CrossRefPubMedGoogle Scholar
  15. Kluge, A.G. and Farris, J.S. 1969. Quantitative phyletics and the evolution of Anurans. Syst. Zool. 18, 1–32.CrossRefGoogle Scholar
  16. Kuykendall, L.D., Roy, M.A., O’Neill, J.J., and Devine, T.E. 1988. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol. 38, 358–361.CrossRefGoogle Scholar
  17. Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid sequencing techniques in bacterial systematics, Wiley, New York, USA.Google Scholar
  18. Lee, J.C., Kim, S.J., and Whang, K.S. 2016. Halomonas sediminicola sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Int. J. Syst. Evol. Microbiol. 66, 3865–3872.CrossRefPubMedGoogle Scholar
  19. Marmur, J. and Doty, P. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5, 109–118.CrossRefPubMedGoogle Scholar
  20. Martinez-Canovas, M.J., Quesada, E., Llamas, I., and Bejar, V. 2004. Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 54, 733–737.CrossRefPubMedGoogle Scholar
  21. Mata, J.A., Martinez-Canovas, J., Quesada, E., and Bejar, V. 2002. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst. Appl. Microbiol. 25, 360–375.CrossRefPubMedGoogle Scholar
  22. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  23. Qu, L., Lai, Q., Zhu, F., Hong, X., Zhang, J., Shao, Z., and Sun, X. 2011. Halomonas daqiaonensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from a littoral saltern. Int. J. Syst. Evol. Microbiol. 61, 1612–1616.CrossRefPubMedGoogle Scholar
  24. Quillaguaman, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M.T., and Delgado, O. 2004. Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int. J. Syst. Evol. Microbiol. 54, 721–725.CrossRefPubMedGoogle Scholar
  25. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  26. Sasser, M. 1990. Identification of bacteria through fatty acid analysis, pp. 199–204, In Klement, Z., Rudolph, K., and Sands, D.C. (eds.), Methods in Phytobacteriology, Akademiai Kaido, Budapest, Hungary.Google Scholar
  27. Sehgal, S.N. and Gibbons, N.E. 1960. Effect of some metal ions on the growth of Halobacterium cutirubrum. Can. J. Microbiol. 6, 165–169.CrossRefPubMedGoogle Scholar
  28. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Tang, X., Zhai, L., Lin, Y., Yao, S., Wang, L., Ge, Y., Liu, Y., Zhang, X., Zhang, T., Zhang, L., et al. 2017. Halomonas alkalicola sp. nov., isolated from a household product plant. Int. J. Syst. Evol. Microbiol. 67, 1546–1550.CrossRefPubMedGoogle Scholar
  30. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Tindall, B.J. 1990. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 66, 199–202.CrossRefGoogle Scholar
  32. Vreeland, R.H., Litchfield, C.D., Martin, E.L., and Elliot, E. 1980. Halomonas elongata, a new genus and species of extremely salttolerant bacteria. Int. J. Syst. Bacteriol. 30, 485–495.CrossRefGoogle Scholar
  33. Wang, C.Y., Wu, S.J., Ng, C.C., Tzeng, W.S., and Shyu, Y.T. 2012. Halomonas beimenensis sp. nov., isolated from an abandoned saltern. Int. J. Syst. Evol. Microbiol. 62, 3013–3017.CrossRefPubMedGoogle Scholar
  34. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murry, R.G.E., Stackebrandt, E., et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar
  35. Wu, Y.H., Xu, X.W., Huo, Y.Y., Zhou, P., Zhu, X.F., Zhang, H.B., and Wu, M. 2008. Halomonas caseinilytica sp. nov., a halophilic bacterium isolated from a saline lake on the Qinghai-Tibet Plateau, China. Int. J. Syst. Evol. Microbiol. 58, 1259–1262.CrossRefPubMedGoogle Scholar
  36. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2016. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.Google Scholar
  37. Zhong, Z.P., Liu, Y., Wang, F., Zhou, Y.G., Liu, H.C., and Liu, Z.P. 2016. Lacimicrobium alkaliphilum gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from a salt lake. Int. J. Syst. Evol. Microbiol. 66, 422–429.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Hui-bin Lu
    • 1
    • 2
  • Peng Xing
    • 1
  • Lei Zhai
    • 3
  • Dorji Phurbu
    • 4
  • Qian Tang
    • 1
    • 2
  • Qing-long Wu
    • 1
    • 5
  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China
  3. 3.China Center of Industrial Culture Collection (CICC), China National ResearchInstitute of Food and Fermentation IndustriesBeijingP. R. China
  4. 4.Tibet Plateau Institute of BiologyLhasaP. R. China
  5. 5.Sino-Danish Centre for Education and ResearchUniversity of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations