Temporal and spatial impact of Spartina alterniflora invasion on methanogens community in Chongming Island, China

  • Xue Ping Chen
  • Jing Sun
  • Yi Wang
  • Heng Yang Zhang
  • Chi Quan He
  • Xiao Yan Liu
  • Nai Shun Bu
  • Xi-En Long
Article

Abstract

Methane production by methanogens in wetland is recognized as a significant contributor to global warming. Spartina alterniflora (S. alterniflora), which is an invasion plant in China’s wetland, was reported to have enormous effects on methane production. But studies on shifts in the methanogen community in response to S. alterniflora invasion at temporal and spatial scales in the initial invasion years are rare. Sediments derived from the invasive species S. alterniflora and the native species Phragmites australis (P. australis) in pairwise sites and an invasion chronosequence patch (4 years) were analyzed to investigate the abundance and community structure of methanogens using quantitative real-time PCR (qPCR) and Denaturing gradient gel electrophoresis (DGGE) cloning of the methyl-coenzyme M reductase A (mcrA) gene. For the pairwise sites, the abundance of methanogens in S. alterniflora soils was lower than that of P. australis soils. For the chronosequence patch, the abundance and diversity of methanogens was highest in the soil subjected to two years invasion, in which we detected some rare groups including Methanocellales and Methanococcales. These results indicated a priming effect at the initial invasion stages of S. alterniflora for microorganisms in the soil, which was also supported by the diverse root exudates. The shifts of methanogen communities after S. alterniflora invasion were due to changes in pH, salinity and sulfate. The results indicate that root exudates from S. alterniflora have a priming effect on methanogens in the initial years after invasion, and the predominate methylotrophic groups (Methanosarcinales) may adapt to the availability of diverse substrates and reflects the potential for high methane production after invasion by S. alterniflora.

Keywords

methanogens methyl-coenzyme M reductase A (mcrASpartina alterniflora Phragmites australis chronosequence priming effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8062_MOESM1_ESM.pdf (2.7 mb)
Supplementary material, approximately 2.69 MB.

References

  1. Ashelford, K.E., Chuzhanova, N.A., Fry, J.C., Jones, A.J., and Weightman, A.J. 2006. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl. Environ. Microb. 72, 5734–5741.CrossRefGoogle Scholar
  2. Bai, J.H., Zhang, G.L., Zhao, Q.Q., Lu, Q.Q., Jia, J., Cui, B.S., and Liu, X.H. 2016. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Sci. Rep. 6, 34835.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bonin, A.S. and Boone, D.R. 2006. The order methanobacteriales. Springer, New York, USA.CrossRefGoogle Scholar
  4. Bu, N.S., Qu, J.F., Li, Z.L., Li, G., Zhao, H., Zhao, B., Li, B., Chen, J.K., and Fang, C.M. 2015. Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River Estuary, China. PLoS One 10, e0121571.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Buyantuyev, A., Xu, P.Y., Wu, J.G., Piao, S.J., and Wang, D.C. 2012. A Space-For-Time (SFT) substitution approach to studying historical phenological changes in urban environment. PLoS One 7, e51260.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cao, P., Zhang, L.M., Shen, J.P., Zheng, Y.M., Di, H.J., and He, J.Z. 2012. Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiol. Ecol. 80, 146–158.CrossRefPubMedGoogle Scholar
  7. Chen, X.P., Ma, H., Zheng, Y., Liu, J.M., Liang, X., and He, C.Q. 2016. Changes in methane emission and methanogenic and methanotrophic communities in restored wetland with introduction of Alnus trabeculosa. J. Soil. Sediment. 17, 181–189.CrossRefGoogle Scholar
  8. Chen, J.Q., Zhao, B., Ren, W.W., Saunders, S.C., Ma, Z.J., Li, B., Luo, Y.Q., and Chen, J.K. 2008. Invasive Spartina and reduced sediments: Shanghai’s dangerous silver bullet. J. Plant Ecol. 1, 79–84.CrossRefGoogle Scholar
  9. Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., and Lynch, J.C. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 17.Google Scholar
  10. Chung, C.H., Zhuo, R.Z., and Xu, G.W. 2004. Creation of Spartina plantations for reclaiming Dongtai, China, tidal flats and offshore sands. Ecol. Eng. 23, 135–150.CrossRefGoogle Scholar
  11. Conrad, R., Klose, M., and Noll, M. 2009. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environ. Microbiol. 11, 1844–1853.CrossRefPubMedGoogle Scholar
  12. Fan, L., Reynolds, D., Liu, M., Stark, M., Kjelleberg, S., Webster, N.S., and Thomas, T. 2012. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc. Natl. Acad. Sci. USA 109, E1878–E1887.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fernández-de Córdova, M.L., Ruíz-Medina, A., and Molina-Díaz, A. 1997. Solid phase spectrophotometric microdetermination of iron with ascorbic acid and ferrozine. Fresenius’ J. Anal. Chem. 357, 44–49.CrossRefGoogle Scholar
  14. Fontaine, S., Mariotti, A., and Abbadie, L. 2003. The priming effect of organic matter: a question of microbial competition? Soil Biol. Biochem. 35, 837–843.Google Scholar
  15. Galand, P.E., Juottonen, H., Fritze, H., and Yrjala, K. 2005. Methanogen communities in a drained bog: Effect of ash fertilization. Microb. Ecol. 49, 209–217.CrossRefPubMedGoogle Scholar
  16. Ganzert, L., Jurgens, G., Munster, U., and Wagner, D. 2007. Metha nogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol. Ecol. 59, 476–488.CrossRefPubMedGoogle Scholar
  17. Jonasson, S., Michelsen, A., Schmidt, I.K., Nielsen, E.V., and Callaghan, T.V. 1996. Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: Implications for plant nutrient uptake. Oecologia 106, 507–515.CrossRefPubMedGoogle Scholar
  18. Kendall, M.M. and Boone, D.R. 2006. The order methanosarcinales. Springer, New York, USA.CrossRefGoogle Scholar
  19. Kotsyurbenko, O.R., Friedrich, M.W., Simankova, M.V., Nozhevnikova, A.N., Golyshin, P.N., Timmis, K.N., and Conrad, R. 2007. Shift from acetoclastic to H2-dependent methanogenes is in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobactetium strain. Appl. Environ. Microbiol. 73, 2344–2348.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kuzyakov, Y., Friedel, J.K., and Stahr, K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498.CrossRefGoogle Scholar
  21. Li, B., Liao, C.H., Zhang, X.D., Chen, H.L., Wang, Q., Chen, Z.Y., Gan, X.J., Wu, J.H., Zhao, B., Ma, Z.J., et al. 2009. Spartina alterniflora invasions in the Yangtze River estuary, China: An overview of current status and ecosystem effects. Ecol. Eng. 35, 511–520.CrossRefGoogle Scholar
  22. Liao, C.Z., Luo, Y.Q., Jiang, L.F., Zhou, X.H., Wu, X.W., Fang, C.M., Chen, J.K., and Li, B. 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10, 1351–1361.CrossRefGoogle Scholar
  23. Liu, D.Y., Ding, W.X., Jia, Z.J., and Cai, Z.C. 2012. The impact of dissolved organic carbon on the spatial variability of methanogenic archaea communities in natural wetland ecosystems across China. Appl. Microbiol. Biotechnol. 96, 253–263.CrossRefPubMedGoogle Scholar
  24. Lu, Y., Wassmann, R., Neue, H.U., Huang, C., and Bueno, C.S. 2000. Methanogenic responses to exogenous substrates in anaerobic rice soils. Soil Biol. Biochem. 32, 1683–1690.CrossRefGoogle Scholar
  25. Marschner, P., Yang, C.H., Lieberei, R., and Crowley, D.E. 2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 33, 1437–1445.CrossRefGoogle Scholar
  26. McCulley, R.L., Archer, S.R., Boutton, T.W., Hons, F.M., and Zuberer, D.A. 2004. Soil respiration and nutrient cycling in wooded communities developing in grassland. Ecology 85, 2804–2817.CrossRefGoogle Scholar
  27. Murrell, J.C., Millard, P., Baggs, L., Singh, B.K., and Nazaries, L. 2013. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ. Microbiol. 15, 2395.CrossRefPubMedGoogle Scholar
  28. Nahlik, A.M. and Mitsch, W.J. 2011. Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Glob. Change Biol. 17, 1321–1334.CrossRefGoogle Scholar
  29. Narihiro, T., Hori, T., Nagata, O., Hoshino, T., Yumoto, I., and Kamagata, Y. 2011. The impact of aridification and vegetation type on changes in the community structure of methane-cycling microorganisms in Japanese wetland soils. Biosci. Biotechnol. Biochem. 75, 1727–1734.CrossRefPubMedGoogle Scholar
  30. Norton, U., Mosier, A.R., Morgan, J.A., Derner, J.D., Ingram, L.J., and Stahl, P.D. 2008. Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrushsteppe in Wyoming, USA. Soil Biol. Biochem. 40, 1421–1431.CrossRefGoogle Scholar
  31. Parkes, R.J., Brock, F., Banning, N., Hornibrook, E.R.C., Roussel, E.G., Weightman, A.J., and Fry, J.C. 2012. Changes in methanogenic substrate utilization and communities with depth in a salt-marsh, creek sediment in southern England. Estuar. Coast. Shelf Sci. 96, 170–178.CrossRefGoogle Scholar
  32. Rooney-Varga, J.N., Giewat, M.W., Duddleston, K.N., Chanton, J.P., and Hines, M.E. 2007. Links between archaeal community structure, vegetation type and methanogenic pathway in Alaskan peatlands. FEMS Microbiol. Ecol. 60, 240–251.CrossRefPubMedGoogle Scholar
  33. Sakai, S., Conrad, R., and Imachi, H. 2014. The family Methanocellaceae. Springer, Heidelberg, Berlin, Germany.CrossRefGoogle Scholar
  34. She, C.X., Zhang, Z.C., Cadillo-Quiroz, H., and Tong, C. 2016. Factors regulating community composition of methanogens and sulfatereducing bacteria in brackish marsh sediments in the Min River estuary, southeastern China. Estuar. Coast. Shelf Sci. 181, 27–38.CrossRefGoogle Scholar
  35. Smith, J.M., Castro, H., and Ogram, A. 2007. Structure and function of methanogens along a short-term restoration chronosequence in the Florida everglades. Appl. Environ. Microbiol. 73, 4135–4141.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Smith, D.L. and Johnson, L. 2004. Vegetation-mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands. Ecology 85, 3348–3361.CrossRefGoogle Scholar
  37. Tong, C., Morris, J.T., Huang, J., Xu, H., and Wan, S. 2017. Changes in pore-water chemistry and methane emission following the invasion of Spartina alterniflora into an oliogohaline marsh. Limnol. Oceanogr. 63, 384–396.CrossRefGoogle Scholar
  38. Wang, J.X. and Wang, J. 2017. Spartina alterniflora, alters ecosystem DMS and CH4, emissions and their relationship along interacting tidal and vegetation gradients within a coastal salt marsh in Eastern China. Atmos. Environ. 167, 349–359.Google Scholar
  39. Wang, R.Z., Yuan, L., and Zhang, L.Q. 2010. Impacts of Spartina alterniflora invasion on the benthic communities of salt marshes in the Yangtze Estuary, China. Ecol. Eng. 36, 799–806.CrossRefGoogle Scholar
  40. Wei, D. and Wang, X.D. 2017. Uncertainty and dynamics of natural wetland CH4 release in China: Research status and priorities. Atmos. Environ. 154, 95–105.CrossRefGoogle Scholar
  41. Xia, F., Zeleke, J., Sheng, Q., Wu, J.H., and Quan, Z.X. 2015. Communities of ammonia oxidizers at different stages of Spartina alterniflora invasion in salt marshes of Yangtze River estuary. J. Microbiol. 53, 311–320.CrossRefPubMedGoogle Scholar
  42. Yang, W., An, S.Q., Zhao, H., Xu, L.Q., Qiao, Y.J., and Cheng, X.L. 2016a. Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of eastern China. Ecol. Eng. 86, 174–182.CrossRefGoogle Scholar
  43. Yang, W., Jeelani, N., Leng, X., Cheng, X.L., and An, S.Q. 2016b. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China. Sci. Rep. 6, 26880.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yang, L.H., Shi, C.P., Shang, Y., Zhang, J.L., Han, J.M., and Dong, J.G. 2014. The extraction, isolation and identification of exudates from the roots of Flaveria bidentis. J. Integr. Agric. 13, 105–114.CrossRefGoogle Scholar
  45. Yang, W., Yan, Y.E., Jiang F., Leng X., Cheng X.L., and An, S.Q. 2016c. Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora, invasion in a coastal wetland of eastern China. Plant Soil 408, 1–14.CrossRefGoogle Scholar
  46. Yuan, J.J., Ding, W.X., Liu, D.Y., Kang, H., Xiang, J., and Lin, Y.X. 2016. Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion. Sci. Rep. 6, 18777.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zeleke, J., Sheng, Q., Wang, J.G., Huang, M.Y., Xia, F., Wu, J.H., and Quan, Z.X. 2013. Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Front. Microbiol. 4, 243.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhang, Y., Ding, W., Cai, Z., Valerie, P., and Han, F. 2010. Response of methane emission to invasion of Spartina alterniflora and exogenous N deposition in the coastal salt marsh. Atmos. Environ. 44, 4588–4594.CrossRefGoogle Scholar
  49. Zhang, Y., Ding, W., Luo, J., and Donnison, A. 2010. Changes in soil organic carbon dynamics in an eastern chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biol. Biochem. 42, 1712–1720.CrossRefGoogle Scholar
  50. Zhang, J.H., Mao, Z.Q., Wang, L.Q., and Shu, H.R. 2007. Bioassay and identification of root exudates of three fruit tree species. J. Integr. Plant Biol. 49, 257–261.CrossRefGoogle Scholar
  51. Zheng, Y., Bu, N.S., Long, X.E., Sun, J., He, C.Q., Liu, X.Y., Cui, J., Liu, D.X., and Chen, X.P. 2017. Sulfate reducer and sulfur oxidizer respond differentially to the invasion of Spartina alterniflora in estuarine salt marsh of China. Ecol. Eng. 99, 182–190.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Xue Ping Chen
    • 1
  • Jing Sun
    • 1
  • Yi Wang
    • 1
  • Heng Yang Zhang
    • 1
  • Chi Quan He
    • 1
  • Xiao Yan Liu
    • 1
  • Nai Shun Bu
    • 2
  • Xi-En Long
    • 3
  1. 1.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiP. R. China
  2. 2.School of Environmental ScienceLiaoning UniversityShenyangP. R. China
  3. 3.Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenP. R. China

Personalised recommendations