Journal of Microbiology

, Volume 56, Issue 8, pp 525–533 | Cite as

Phylogenetic comparison of Epstein-Barr virus genomes

  • Su Jin Choi
  • Seok Won Jung
  • Sora Huh
  • Hyosun Cho
  • Hyojeung Kang


Technologies used for genome analysis and whole genome sequencing are useful for us to understand genomic characterization and divergence. The Epstein-Barr virus (EBV) is an oncogenic virus that causes diverse diseases such as Burkitt’s lymphoma (BL), nasopharyngeal carcinoma (NPC), Hodgkin’s lymphoma (HL), and gastric carcinoma (GC). EBV genomes found in these diseases can be classified either by phases of EBV latency (type-I, -II, and -III latency) or types of EBNA2 sequence difference (type-I EBV, type-II EBV or EBV-1, EBV-2). EBV from EBV-transformed lymphoblastoid cell line (LCL) establishes type-III latency, EBV from NPC establishes type-II latency, and EBV from GC establishes type-I latency. However, other important factors play key roles in classifying numerous EBV strains because EBV genomes are highly diverse and not phylogenetically related to types of EBV-associated diseases. Herein, we first reviewed previous studies to describe molecular characteristics of EBV genomes. Then, using comparative and phylogenetic analyses, we phylogenetically analyzed molecular variations of EBV genomes and proteins. The review of previous studies and our phylogenetic analysis showed that EBV genomes and proteins were highly diverse regardless of types of EBV-associated diseases. Other factors should be considered in determining EBV taxonomy. This review will be helpful to understand complicated phylogenetic relationships of EBV genomes.


Epstein-Barr virus phylogenetic analysis genomic variations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Seguin, C., et al. 1984. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207–211.CrossRefPubMedGoogle Scholar
  2. Chang, M.S. and Kim, W.H. 2005. Epstein-Barr virus in human malignancy: a special reference to Epstein-Barr virus associated gastric carcinoma. Cancer Res. Treat. 37, 257–267.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chen, M.R. 2011. Epstein-Barr virus, the immune system, and associated diseases. Front. Microbiol. 2, 5.PubMedPubMedCentralGoogle Scholar
  4. Cheung, S.T., Leung, S.F., Lo, K.W., Chiu, K.W., Tam, J.S., Fok, T.F., Johnson, P.J., Lee, J.C., and Huang, D.P. 1998. Specific latent membrane protein 1 gene sequences in type 1 and type 2 Epstein- Barr virus from nasopharyngeal carcinoma in Hong Kong. Int. J. Cancer 76, 399–406.CrossRefPubMedGoogle Scholar
  5. Choi, S.J., Shin, Y.S., Kang, B.W., Kim, J.G., Won, K.J., Lieberman, P.M., Cho, H., and Kang, H. 2017. DNA hypermethylation induced by Epstein-Barr virus in the development of Epstein-Barr virus-associated gastric carcinoma. Arch. Pharm. Res. 40, 894–905.CrossRefPubMedGoogle Scholar
  6. Dambaugh, T., Hennessy, K., Chamnankit, L., and Kieff, E. 1984. U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc. Natl. Acad. Sci. USA 81, 7632–7636.CrossRefPubMedGoogle Scholar
  7. Dolan, A., Addison, C., Gatherer, D., Davison, A.J., and McGeoch, D.J. 2006. The genome of Epstein-Barr virus type 2 strain AG876. Virology 350, 164–170.CrossRefPubMedGoogle Scholar
  8. Frazer, K.A., Pachter, L., Poliakov, A., Rubin, E.M., and Dubchak, I. 2004. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gulley, M.L. 2001. Molecular diagnosis of Epstein-Barr virus-related diseases. J. Mol. Diagn. 3, 1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kanda, T., Furuse, Y., Oshitani, H., and Kiyono, T. 2016. Highly efficient CRISPR/Cas9-mediated cloning and functional characterization of gastric cancer-derived Epstein-Barr virus strains. J. Virol. 90, 4383–4393.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kenney, S.C. and Mertz, J.E. 2014. Regulation of the latent-lytic switch in Epstein-Barr virus. Semin. Cancer Biol. 26, 60–68.CrossRefPubMedGoogle Scholar
  12. Kim, D.N., Chae, H.S., Oh, S.T., Kang, J.H., Park, C.H., Park, W.S., Takada, K., Lee, J.M., Lee, W.K., and Lee, S.K. 2007. Expression of viral microRNAs in Epstein-Barr virus-associated gastric carcinoma. J. Virol. 81, 1033–1036.CrossRefPubMedGoogle Scholar
  13. Kim, D.N., Seo, M.K., Choi, H., Kim, S.Y., Shin, H.J., Yoon, A.R., Tao, Q., Rha, S.Y., and Lee, S.K. 2013. Characterization of naturally Epstein-Barr virus-infected gastric carcinoma cell line YCCEL1. J. Gen. Virol. 94, 497–506.CrossRefPubMedGoogle Scholar
  14. Kwok, H., Tong, A.H., Lin, C.H., Lok, S., Farrell, P.J., Kwong, D.L., and Chiang, A.K. 2012. Genomic sequencing and comparative analysis of Epstein-Barr virus genome isolated from primary nasopharyngeal carcinoma biopsy. PLoS One 7, e36939.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kwok, H., Wu, C.W., Palser, A.L., Kellam, P., Sham, P.C., Kwong, D.L., and Chiang, A.K. 2014. Genomic diversity of Epstein-Barr virus genomes isolated from primary nasopharyngeal carcinoma biopsy samples. J. Virol. 88, 10662–10672.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lee, W., Hwang, Y.H., Lee, S.K., Subramanian, C., and Robertson, E.S. 2001. An Epstein-Barr virus isolated from a lymphoblastoid cell line has a 16-kilobase-pair deletion which includes gp350 and the Epstein-Barr virus nuclear antigen 3A. J. Virol. 75, 8556–8568.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lin, Z., Wang, X., Strong, M.J., Concha, M., Baddoo, M., Xu, G., Baribault, C., Fewell, C., Hulme, W., Hedges, D., et al. 2013. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J. Virol. 87, 1172–1182.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Liu, P., Fang, X., Feng, Z., Guo, Y.M., Peng, R.J., Liu, T., Huang, Z., Feng, Y., Sun, X., Xiong, Z., et al. 2011. Direct sequencing and characterization of a clinical isolate of Epstein-Barr virus from nasopharyngeal carcinoma tissue by using next-generation sequencing technology. J. Virol. 85, 11291–11299.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lo, K.W. and Huang, D.P. 2002. Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin. Cancer Biol. 12, 451–462.CrossRefPubMedGoogle Scholar
  20. Matsusaka, K., Funata, S., Fukuyo, M., Seto, Y., Aburatani, H., Fukayama, M., and Kaneda, A. 2017. Epstein-Barr virus infection induces genome-wide de novo DNA methylation in non-neoplastic gastric epithelial cells. J. Pathol. 242, 391–399.CrossRefPubMedGoogle Scholar
  21. Mukhopadhyay, R. 2009. DNA sequencers: the next generation. Anal. Chem. 81, 1736–1740.CrossRefPubMedGoogle Scholar
  22. Murata, T. 2014. Regulation of Epstein-Barr virus reactivation from latency. Microbiol. Immunol. 58, 307–317.CrossRefPubMedGoogle Scholar
  23. Murata, T. and Tsurumi, T. 2014. Switching of EBV cycles between latent and lytic states. Rev. Med. Virol. 24, 142–153.CrossRefPubMedGoogle Scholar
  24. Neves, M., Marinho-Dias, J., Ribeiro, J., and Sousa, H. 2017. Epstein-Barr virus strains and variations: Geographic or disease-specific variants? J. Med. Virol. 89, 373–387.CrossRefGoogle Scholar
  25. Odumade, O.A., Hogquist, K.A., and Balfour, H.H. 2011. Progress and problems in understanding and managing primary Epstein- Barr virus infections. Clin. Microbiol. Rev. 24, 193–209.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ohga, S., Nomura, A., Takada, H., and Hara, T. 2002. Immunological aspects of Epstein-Barr virus infection. Crit. Rev. Oncol. Hematol. 44, 203–215.CrossRefPubMedGoogle Scholar
  27. Palser, A.L., Grayson, N.E., White, R.E., Corton, C., Correia, S., Ba Abdullah, M.M., Watson, S.J., Cotten, M., Arrand, J.R., Murray, P.G., et al. 2015. Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. J. Virol. 89, 5222–5237.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Parker, B.D., Bankier, A., Satchwell, S., Barrell, B., and Farrell, P.J. 1990. Sequence and transcription of Raji Epstein-Barr virus DNA spanning the B95-8 deletion region. Virology 179, 339–346.CrossRefPubMedGoogle Scholar
  29. Qiu, J., Cosmopoulos, K., Pegtel, M., Hopmans, E., Murray, P., Middeldorp, J., Shapiro, M., and Thorley-Lawson, D.A. 2011. A novel persistence associated EBV miRNA expression profile is disrupted in neoplasia. PLoS Pathog. 7, e1002193.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ressing, M.E., van Gent, M., Gram, A.M., Hooykaas, M.J., Piersma, S.J., and Wiertz, E.J. 2015. Immune evasion by Epstein-Barr virus. Curr. Top. Microbiol. Immunol. 391, 355–381.PubMedGoogle Scholar
  31. Robertson, E.S., Ooka, T., and Kieff, E.D. 1996. Epstein-Barr virus vectors for gene delivery to B lymphocytes. Proc. Natl. Acad. Sci. USA 93, 11334–11340.CrossRefPubMedGoogle Scholar
  32. Sample, J., Young, L., Martin, B., Chatman, T., Kieff, E., Rickinson, A., and Kieff, E. 1990. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J. Virol. 64, 4084–4092.PubMedPubMedCentralGoogle Scholar
  33. Shibata, D., Tokunaga, M., Uemura, Y., Sato, E., Tanaka, S., and Weiss, L.M. 1991. Association of Epstein-Barr virus with undifferentiated gastric carcinomas with intense lymphoid infiltration. Lymphoepithelioma-like carcinoma. Am. J. Pathol. 139, 469–474.PubMedGoogle Scholar
  34. Song, K.A., Yang, S.D., Hwang, J., Kim, J.I., and Kang, M.S. 2015. The full-length DNA sequence of Epstein Barr virus from a human gastric carcinoma cell line, SNU-719. Virus Genes 51, 329–337.CrossRefPubMedGoogle Scholar
  35. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tso, K.K., Yip, K.Y., Mak, C.K., Chung, G.T., Lee, S.D., Cheung, S.T., To, K.F., and Lo, K.W. 2013. Complete genomic sequence of Epstein-Barr virus in nasopharyngeal carcinoma cell line C666-1. Infect. Agents Cancer 8, 29.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tsurumi, T., Fujita, M., and Kudoh, A. 2005. Latent and lytic Epstein- Barr virus replication strategies. Rev. Med. Virol. 15, 3–15.CrossRefPubMedGoogle Scholar
  38. Tzellos, S. and Farrell, P.J. 2012. Epstein-Barr virus sequence variation–biology and disease. Pathogens 1, 156–174.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wu, C.C., Fang, C.Y., Cheng, Y.J., Hsu, H.Y., Chou, S.P., Huang, S.Y., Tsai, C.H., and Chen, J.Y. 2017. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J. Biomed. Sci. 24, 2.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Xiao, K., Yu, Z., Li, X., Li, X., Tang, K., Tu, C., Qi, P., Liao, Q., Chen, P., Zeng, Z., et al. 2016. Genome-wide analysis of Epstein-Barr virus (EBV) integration and strain in C666-1 and Raji cells. J. Cancer 7, 214–224.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Young, L.S., Dawson, C.W., and Eliopoulos, A.G. 2000. The expression and function of Epstein-Barr virus encoded latent genes. Mol. Pathol. 53, 238–247.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Young, L.S. and Rickinson, A.B. 2004. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757–768.CrossRefPubMedGoogle Scholar
  43. Young, L.S., Yap, L.F., and Murray, P.G. 2016. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat. Rev. Cancer 16, 789–802.CrossRefPubMedGoogle Scholar
  44. Zeng, M.S., Li, D.J., Liu, Q.L., Song, L.B., Li, M.Z., Zhang, R.H., Yu, X.J., Wang, H.M., Ernberg, I., and Zeng, Y.X. 2005. Genomic sequence analysis of Epstein-Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J. Virol. 79, 15323–15330.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhang, C.X., Decaussin, G., Daillie, J., and Ooka, T. 1988. Altered expression of two Epstein-Barr virus early genes localized in BamHI-A in nonproducer Raji cells. J. Virol. 62, 1862–1869.PubMedPubMedCentralGoogle Scholar
  46. Zhang, X.S., Song, K.H., Mai, H.Q., Jia, W.H., Feng, B.J., Xia, J.C., Zhang, R.H., Huang, L.X., Yu, X.J., Feng, Q.S., et al. 2002. The 30 bp deletion variant: a polymorphism of latent membrane protein 1 prevalent in endemic and non-endemic areas of nasopharyngeal carcinomas in China. Cancer Lett. 176, 65–73.CrossRefPubMedGoogle Scholar
  47. Zhou, L., Chen, J.N., Qiu, X.M., Pan, Y.H., Zhang, Z.G., and Shao, C.K. 2017. Comparative analysis of 22 Epstein-Barr virus genomes from diseased and healthy individuals. J. Gen. Virol. 98, 96–107.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Pharmacy, Research Institute of Pharmaceutical Sciences and Kyungpook National University Cancer Research InstituteKyungpook National UniversityDaeguRepublic of Korea
  2. 2.College of PharmacyDuksung Women’s UniversitySeoulRepublic of Korea

Personalised recommendations