Journal of Microbiology

, Volume 56, Issue 7, pp 485–492 | Cite as

Proposal of three novel species of soil bacteria, Variovorax ureilyticus, Variovorax rhizosphaerae, and Variovorax robiniae, in the family Comamonadaceae

  • Tuan Manh Nguyen
  • Ngoc Hoang Trinh
  • Jaisoo Kim


Three novel bacterial strains (UCM-2T, UCM-G28T, and UCM-G35T) were obtained while isolating soil bacteria for the development of antibiotics. Cells of these strains were Gram-negative, non-spore forming, motile by means of a single flagellum, and rod shaped. In all strains, the predominant isoprenoid quinone was ubiquinone-8 (Q-8). Cells contained C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c), summed feature 8 (C18:1ω7c and/or C18:1ω6c), and C17:0 cyclo as the major fatty acids, and C10:0 3-OH as the major hydroxy fatty acid. The polar lipid profiles of the three novel strains were dominated by diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. The genomic DNA G + C contents of strains UCM-2T, UCM-G28T, and UCMG35T were 67.5, 65.9, and 66.4 mol%, respectively. Phylogenetic analyses based on 16S rRNA sequences showed that strain UCM-2T was most closely related to Variovorax soli NBRC 106424T, whereas strains UCM-G28T and UCM-G35T were most similar to Variovorax ginsengisoli Gsoil 3165T. Values indicating DNA-DNA hybridization between the novel isolates and closely related species in the genus Variovorax were lower than the 70% cut-off point. These phenotypic, chemotaxonomic, and phylogenetic data indicate that the three isolates should be classified as new members of the genus Variovorax, for which the names Variovorax ureilyticus sp. nov., Variovorax rhizosphaerae sp. nov., and Variovorax robiniae sp. nov. are proposed. The type strains are UCM-2T (= KACC 18899T = NBRC 112306T), UCMG28T (= KACC 18900T = NBRC 112307T), and UCM-G35T (= KACC 18901T = NBRC 112308T), respectively.


Variovorax ureilyticus sp. nov. Variovorax rhizosphaerae sp. nov. Variovorax robiniae sp. nov. taxonomy soil bacteria Comamonadaceae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8025_MOESM1_ESM.pdf (855 kb)
Supplementary material, approximately 850 KB.


  1. Davis, D.H., Douroroff, M., Stanier, R.Y., and Mandel, M. 1969 Proposal to reject the genus Hydrogenomonas: Taxonomic implications. Int. J. Syst. Evol. Microbiol. 19, 375–390Google Scholar
  2. Ezaki, T., Hashimoto, Y., and YabuuchiI, E. 1989 Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39, 224–229Google Scholar
  3. Felsenstein, J. 1981 Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376CrossRefPubMedGoogle Scholar
  4. Felsenstein, J. 1985 Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791CrossRefPubMedGoogle Scholar
  5. Fitch, W.M. 1971 Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20, 406–416CrossRefGoogle Scholar
  6. Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A., and Olsen, G.J. 2008 Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470CrossRefPubMedCentralPubMedGoogle Scholar
  7. Gao, J.L., Yuan, M., Wang, X.M., Qiu, T.L., Li, J.W., Liu, H.C., Li, X.A., Chen, J., and Sun, J.G. 2015 Variovorax guangxiensis sp. nov., an aerobic, 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from banana rhizosphere. Antonie van Leeuwenhoek 107, 65–72PubMedGoogle Scholar
  8. Han, J.I., Choi, H.K., Lee, S.W., Orwin, P.M., Kim, J., LaRoe, S.L., Kim, T., O’Neil, J., Leadbetter, J.R., Lee, S.Y., et al. 2011 Complete genome sequence of the metabolically versatile plant growthpromoting endophyte Variovorax paradoxus S110 J. Bacteriol. 193, 1183–1190CrossRefGoogle Scholar
  9. Im, W.T., Liu, Q.M., Lee, K.J., Kim, S.Y., Lee, S.T., and Yi, T.H. 2010 Variovorax ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 60, 1565–1569PubMedGoogle Scholar
  10. Jiang, F., Chen, L., Belimov, A.A., Shaposhnikov, A.I., Gong, F., Meng, X., Hartung, W., Jeschke, D.W., Davies, W.J., and Dodd, I.C. 2012 Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J. Exp. Bot. 63, 6421–6430CrossRefPubMedCentralPubMedGoogle Scholar
  11. Jin, L., Kim, K.K., Ahn, C.Y., and Oh, H.M. 2012 Variovorax defluvii sp. nov., isolated from sewage. Int. J. Syst. Evol. Microbiol. 62, 1779–1783CrossRefPubMedGoogle Scholar
  12. Kämpfer, P., Busse, H.J., McInroy, J.A., and Glaeser, S.P. 2015 Variovorax gossypii sp. nov., isolated from Gossypium hirsutum. Int. J. Syst. Evol. Microbiol. 65, 4335–4340CrossRefPubMedGoogle Scholar
  13. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012 Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721CrossRefPubMedGoogle Scholar
  14. Kim, B.Y., Weon, H.Y., Yoo, S.H., Lee, S.Y., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2006 Variovorax soli sp. nov., isolated from greenhouse soil. Int. J. Syst. Evol. Microbiol. 56, 2899–2901CrossRefPubMedGoogle Scholar
  15. Krieg, N.R. and Padgett, P.J. 2011 Phenotypic and physiological characterization methods, pp. 15–61 In Rainey, F. and Oren, A. (eds.), Methods in microbiology, vol. 38, 1st edn., Academic Press, Elsevier’s Science & Technology Rights Department in Oxford, UK.Google Scholar
  16. Kumar, S., Stecher, G., and Tamura, K. 2016 MEGA7 Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kurth, C., Schieferdecker, S., Athanasopoulou, K., Seccareccia, I., and Nett, M. 2016 Variochelins, lipopeptide siderophores from Variovorax boronicumulans discovered by genome mining. J. Nat. Prod. 79, 865–872CrossRefPubMedGoogle Scholar
  18. Leadbetter, J.R. and Greenberg, E.P. 2000 Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182, 6921–6926CrossRefPubMedCentralPubMedGoogle Scholar
  19. Lin, P.H., Su, S.C., Tsai, Y.C., and Lee, C.Y. 2002 Identification and characterization of a new gene from Variovorax paradoxus Iso1 encoding N-acyl-D-amino acid amidohydrolase responsible for D-amino acid production. Eur. J. Biochem. 269, 4868–4878CrossRefPubMedGoogle Scholar
  20. Mesbah, M., Premachandran, U., and Whitman, W.B. 1989 Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Evol. Microbiol. 39, 159–167Google Scholar
  21. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984 An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241CrossRefGoogle Scholar
  22. Miwa, H., Ahmed, I., Yoon, J., Yokota, A., and Fujiwara, T. 2008 Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 58, 286–289CrossRefPubMedGoogle Scholar
  23. Nguyen, T.M. and Kim, J. 2016a. Description of Variovorax humicola sp. nov., isolated from a forest topsoil. Int. J. Syst. Evol. Microbiol. 66, 2520–2527CrossRefPubMedGoogle Scholar
  24. Nguyen, T.M. and Kim, J. 2016b. Rhodococcus pedocola sp. nov. and Rhodococcus humicola sp. nov., two antibiotic-producing actinomycetes isolated from soil. Int. J. Syst. Evol. Microbiol. 66, 2362–2369CrossRefPubMedGoogle Scholar
  25. Nguyen, T.M. and Kim, J. 2017 A rapid and simple method for identifying bacterial polar lipid components in wet biomass. J. Microbiol. 55, 635–639CrossRefPubMedGoogle Scholar
  26. Pitcher, D.G., Saunders, N.A., and Owen, R.J. 1989 Rapid extraction of genomic DNA with guanidinium thiocyanate. Lett. Appl. Microbiol. 8, 151–156CrossRefGoogle Scholar
  27. Rohde, M. 2011 Microscopy, pp. 61–100 In Rainey, F. and Oren, A. (eds.), Methods in microbiology, vol. 38, 1st edn., Academic Press, Elsevier’s Science & Technology Rights Department in Oxford, UK.Google Scholar
  28. Saitou, N. and Nei, M. 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425PubMedGoogle Scholar
  29. Sasser, M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc., Delaware, USA.Google Scholar
  30. Satola, B., Wubbeler, J.H., and Steinbuchel, A. 2013 Metabolic characteristics of the species Variovorax paradoxus. Appl. Microbiol. Biotechnol. 97, 541–560CrossRefPubMedGoogle Scholar
  31. Sierra, G. 1957 A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23, 15–22CrossRefPubMedGoogle Scholar
  32. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997 The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882CrossRefPubMedCentralPubMedGoogle Scholar
  33. Tschech, A. and Pfennig, N. 1984 Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137, 163–167CrossRefGoogle Scholar
  34. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987 Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37, 463–464CrossRefGoogle Scholar
  35. Widdel, F. and Pfennig, N. 1981 Studies on dissimilatory sulfatereducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129, 395–400PubMedGoogle Scholar
  36. Willems, A., De Ley, J., Gillis, M., and Kersters, K. 1991 NOTES: Comamonadaceae, a new family encompassing the Acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davi. 1969). Int. J. Syst. Evol. Microbiol. 41, 445–450Google Scholar
  37. Yoon, J.H., Kang, S.J., and Oh, T.K. 2006 Variovorax dokdonensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 56, 811–814CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Tuan Manh Nguyen
    • 1
    • 2
  • Ngoc Hoang Trinh
    • 1
    • 3
  • Jaisoo Kim
    • 1
  1. 1.Department of Life Science, College of Natural Sciences and EngineeringKyonggi UniversitySuwonRepublic of Korea
  2. 2.Thai Nguyen University of Agriculture and ForestryQuyet Thang CommuneThai Nguyen CityVietnam
  3. 3.Thai Nguyen University of SciencesTan Thinh WardThai Nguyen CityVietnam

Personalised recommendations