Advertisement

Journal of Microbiology

, Volume 56, Issue 7, pp 458–466 | Cite as

Taxonomic description and draft genome of Pseudomonas sediminis sp. nov., isolated from the rhizospheric sediment of Phragmites karka

  • Pratiksha Behera
  • Madhusmita Mahapatra
  • Arman Seuylemezian
  • Parag Vaishampayan
  • V. Venkata Ramana
  • Neetha Joseph
  • Amaraja Joshi
  • Yogesh Shouche
  • Mrutyunjay Suar
  • Ajit K. Pattnaik
  • Gurdeep Rastogi
Article

Abstract

The taxonomic position of a Gram-stain-negative, rod-shaped bacterial strain, designated PI11T, isolated from the rhizospheric sediment of Phragmites karka was characterized using a polyphasic approach. Strain PI11T could grow optimally at 1.0% NaCl concentration with pH 7.0 at 30°C and was positive for oxidase and catalase but negative for hydrolysis of starch, casein, and esculin ferric citrate. Phylogenetic analysis of 16S rRNA gene sequences indicated that the strain PI11T belonged to the genus Pseudomonas sharing the highest sequence similarities with Pseudomonas indoloxydans JCM 14246T (99.72%), followed by, Pseudomonas oleovorans subsp. oleovorans DSM 1045T (99.29%), Pseudomonas toyotomiensis JCM 15604T (99.15%), Pseudomonas chengduensis DSM 26382T (99.08%), Pseudomonas oleovorans subsp. lubricantis DSM 21016T (99.08%), and Pseudomonas alcaliphila JCM 10630T (99.01%). Experimental DNA-DNA relatedness between strain PI11T and P. indoloxydans JCM 14246T was 49.4%. The draft genome of strain PI11T consisted of 4,884,839 bp. Average nucleotide identity between the genome of strain PI11T and other closely related type strains ranged between 77.25–90.74%. The polar lipid pattern comprised of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylcholine. The major (> 10%) cellular fatty acids were C18:1ω6c/ω7c, C16:1ω6c/ω7c, and C16:0. The DNA G + C content of strain PI11T was 62.4 mol%. Based on the results of polyphasic analysis, strain PI11T was delineated from other closely related type strains. It is proposed that strain PI11T represents represents a novel species of the genus Pseudomonas, for which the name Pseudomonas sediminis sp. nov. is proposed. The type strain is PI11T (= KCTC 42576T = DSMZ 100245T).

Keywords

Phragmites karka Pseudomonas sediminis sp. nov. polyphasic taxonomy Chilika 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_7549_MOESM1_ESM.pdf (391 kb)
Supplementary material, approximately 391 KB.

References

  1. Angiuoli, S.V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity, G., Kodira, C.D., Kyrpides, N., Madupu, R., Markowitz, V., et al. 2008 Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMICS 12, 137–141CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anzai, Y., Kim, H., Park, J.Y., Wakabayashi, H., and Oyaizu, H. 2000 Phylogenetic affliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50, 1563–1589CrossRefPubMedGoogle Scholar
  3. Behera, P., Mahapatra, S., Mohapatra, M., Kim, J.Y., Adhya, T.K., Raina, V., Suar, M., Pattnaik, A.K., and Rastogi, G. 2017a. Salinity and macrophyte drive the biogeography of the sedimentary bacterial communities in a brackish water tropical coastal lagoon. Sci. Total Environ. 595, 472–485CrossRefPubMedGoogle Scholar
  4. Behera, P., Mohapatra, M., Adhya, T.K., Suar, M., Pattnaik, A.K., and Rastogi, G. 2018 Structural and metabolic diversity of rhizosphere microbial communities of Phragmites karka in a tropical coastal lagoon. Appl. Soil Ecol. 125, 202–212CrossRefGoogle Scholar
  5. Behera, P., Ramana, V.V., Maharana, B., Joseph, N., Vaishampayan, P., Singh, N.K., Shouche, Y., Bhadury, P., Mishra, S.R., Raina, V., et al. 2017b. Mangrovibacter phragmitis sp. nov., an endophyte isolated from the roots of Phragmites karka. Int. J. Syst. Evol. Microbiol. 67, 1228–1234CrossRefPubMedGoogle Scholar
  6. Bligh, E.G. and Dyer, W.J. 1959 A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917CrossRefPubMedGoogle Scholar
  7. De Ley, J., Cattoir, H., and Reynaerts, A. 1970 The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12, 133–142CrossRefPubMedGoogle Scholar
  8. Delorme, S., Lemanceau, P., Christen, R., Corberand, T., Meyer, J.M., and Gardan, L. 2002 Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int. J. Syst. Evol. Microbiol. 52, 513–523PubMedGoogle Scholar
  9. Driscoll, J.A., Brody, S.L., and Kollef, M.H. 2007 The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67, 351–368CrossRefPubMedGoogle Scholar
  10. Gillis, M., De Ley, J., and De Cleene, M. 1970 The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur. J. Biochem. 12, 143–153CrossRefPubMedGoogle Scholar
  11. Gonzalez, J.M. and Saiz-Jimenez, C. 2002 A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773CrossRefPubMedGoogle Scholar
  12. Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., and Tiedje, J.M. 2007 DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91CrossRefPubMedGoogle Scholar
  13. Greene, R.A., Blum, E.F., Decoro, C.T., Fairchild, R.B., Kaplan, M.T., Landau, J.L., and Sharp, T.R. 1951 Rapid methods for the detection of motility. J. Bacteriol. 62, 347PubMedPubMedCentralGoogle Scholar
  14. He, T., Li, Z., Sun, Q., Xu, Y., and Ye, Q. 2016 Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresour. Technol. 200, 493–499CrossRefPubMedGoogle Scholar
  15. Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., and Pace, N.R. 1985 Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82, 6955–6959CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lenaerts, M., Alvarez-Perez, S., de Vega, C., Assche, A.V., Johnson, S.D., Willems, K.A., Herrera, C.M., Jacquemyn, H., and Lievens, B. 2014 Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov., and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Syst. Appl. Microbiol. 37, 402–411PubMedGoogle Scholar
  17. Loveland-Curtze, J., Miteva, V.I., and Brenchley, J.E. 2011 Evaluation of a new fluorimetric DNA-DNA hybridization method. Can. J. Microbiol. 57, 250–255CrossRefPubMedGoogle Scholar
  18. Ma, J., Xu, L., and Jia, L. 2012 Degradation of polycyclic aromatic hydrocarbons by Pseudomonas sp. JM2 isolated from active sewage sludge of chemical plant. J. Environ. Sci. (China) 24, 2141–2148Google Scholar
  19. Majeed, H.A. and AL-Sabhany, R.O.S. 2016 Isolation and identification of Pseudomonas aeruginosa from different sources (soil, wound, urine) and checking its MIC with various antibiotics. Helix 4–5, 795–799Google Scholar
  20. Manickam, N., Ghosh, A., Jain, R.K., and Mayilraj, S. 2008 Description of a novel indole-oxidizing bacterium Pseudomonas indoloxydans sp. nov., isolated from a pesticide-contaminated site. Syst. Appl. Microbiol. 31, 101–107PubMedGoogle Scholar
  21. Marmur, J. 1961 A procedure for isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3, 208–218CrossRefGoogle Scholar
  22. Miller, J.R., Koren, S., and Sutton, G. 2010 Assembly algorithms for next-generation sequencing data. Genomics 95, 315–327CrossRefPubMedPubMedCentralGoogle Scholar
  23. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984 An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241CrossRefGoogle Scholar
  24. Morris, C.E., Sands, D.C., Vinatzer, B.A., Glaux, C., Guilbaud, C., Buffiere A., Yan, S., Dominguez, H., and Thompson, B.M. 2008 The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J. 2, 321–334CrossRefPubMedGoogle Scholar
  25. Mulamattathil, S.G., Bezuidenhout, C., Mbewe, M., and Ateba, C.N. 2014 Isolation of environmental bacteria from surface and drinking water in Mafikeng, South Africa, and characterization using their antibiotic resistance profiles. J. Pathog. 2014, 371208CrossRefPubMedPubMedCentralGoogle Scholar
  26. Murray, R.G.E., Doetsch, R.N., and Robinow, C.F. 1994 Determinative and cytological light microscopy, pp. 21–41 In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (ed.), Methods for general and Molecular Bacteriology. American Society for Microbiology, Wahington, DC, USA.Google Scholar
  27. Palleroni, N.J. 2015 Pseudomonas. Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Bergey’s Manual Trust.CrossRefGoogle Scholar
  28. Pruesse, E., Peplies, J., and Glöckner, F.O. 2012 SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rodriguez-R, L.M. and Konstantinidis, K.T. 2014 Bypassing cultivation to identify bacterial species. Microbe 9, 111–118Google Scholar
  30. Rogers, J.S. and Swofford, D.L. 1998 A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst. Biol. 47, 77–89CrossRefPubMedGoogle Scholar
  31. Rossello, R., Garcia-Valdes, E., Lalucat, J., and Ursing, J. 1991 Genotypic and phenotypic diversity of Pseudomonas stutzeri. Syst. Appl. Microbiol. 14, 150–157CrossRefGoogle Scholar
  32. Saitou, N. and Nei, M. 1987 The Neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425PubMedGoogle Scholar
  33. Sasser, M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 MIDI Inc., Newark, DE, USA.Google Scholar
  34. Simmons, J.S. 1926 A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi. J. Infect. Dis. 39, 209–214CrossRefGoogle Scholar
  35. Smibert, R.M. and Krieg, N.R. 1994 Phenotypic characterization, pp. 607–654 In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.), Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, USA.Google Scholar
  36. Srichandan, S., Kim, Y.J., Kumar, A., Mishra, D.R., Bhadury, P., Muduli, P.R., Pattnaik, A.K., and Rastogi, G. 2015 Inter annual and cyclone-driven variability in phytoplankton communities of a tropical coastal lagoon. Mar. Poll. Bull. 101, 39–52CrossRefGoogle Scholar
  37. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013 MEGA6 Molecular Evolutionary Genetics Analysis Version 6.0 Mol. Biol. Evol. 30, 2725–2729CrossRefGoogle Scholar
  38. Thompson, C.C., Chimetto, L., Edwards, R.A., Swings, J., Stackebrandt, E., and Thompson, F.L. 2013 Microbial genomic taxonomy. BMC Genomics 14, 913CrossRefPubMedPubMedCentralGoogle Scholar
  39. Toro, M., Ramírez-Bahena, M.H., Velazquez, E., and Peix, A. 2013 Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil. Int. J. Syst. Evol. Microbiol. 63, 4413–4420CrossRefPubMedGoogle Scholar
  40. Vancanneyt, M., Witt, S., Abraham, W.R., Kersters, K., and Fredrickson, H.L. 1996 Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Sytem. Appl. Microbiol. 19, 528–540CrossRefGoogle Scholar
  41. Vessey, J.K. 2003 Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586CrossRefGoogle Scholar
  42. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987 Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464CrossRefGoogle Scholar
  43. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017 Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhu, W., Lomsadze, A., and Borodovsky, M. 2010 Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Pratiksha Behera
    • 1
    • 2
  • Madhusmita Mahapatra
    • 1
  • Arman Seuylemezian
    • 3
  • Parag Vaishampayan
    • 3
  • V. Venkata Ramana
    • 4
  • Neetha Joseph
    • 4
  • Amaraja Joshi
    • 4
  • Yogesh Shouche
    • 4
  • Mrutyunjay Suar
    • 2
  • Ajit K. Pattnaik
    • 1
  • Gurdeep Rastogi
    • 1
  1. 1.Wetland Research and Training CentreChilika Development AuthorityBalugaon, OdishaIndia
  2. 2.School of BiotechnologyKIIT UniversityBhubaneswar, OdishaIndia
  3. 3.Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, NASACalifornia Institute of TechnologyPasadenaUSA
  4. 4.National Centre for Microbial ResourceNational Centre for Cell SciencePune, MaharashtraIndia

Personalised recommendations