Advertisement

Taxonomic description and draft genome of Pseudomonas sediminis sp. nov., isolated from the rhizospheric sediment of Phragmites karka

  • Pratiksha Behera
  • Madhusmita Mahapatra
  • Arman Seuylemezian
  • Parag Vaishampayan
  • V. Venkata Ramana
  • Neetha Joseph
  • Amaraja Joshi
  • Yogesh Shouche
  • Mrutyunjay Suar
  • Ajit K. Pattnaik
  • Gurdeep Rastogi
Article

Abstract

The taxonomic position of a Gram-stain-negative, rod-shaped bacterial strain, designated PI11T, isolated from the rhizospheric sediment of Phragmites karka was characterized using a polyphasic approach. Strain PI11T could grow optimally at 1.0% NaCl concentration with pH 7.0 at 30°C and was positive for oxidase and catalase but negative for hydrolysis of starch, casein, and esculin ferric citrate. Phylogenetic analysis of 16S rRNA gene sequences indicated that the strain PI11T belonged to the genus Pseudomonas sharing the highest sequence similarities with Pseudomonas indoloxydans JCM 14246T (99.72%), followed by, Pseudomonas oleovorans subsp. oleovorans DSM 1045T (99.29%), Pseudomonas toyotomiensis JCM 15604T (99.15%), Pseudomonas chengduensis DSM 26382T (99.08%), Pseudomonas oleovorans subsp. lubricantis DSM 21016T (99.08%), and Pseudomonas alcaliphila JCM 10630T (99.01%). Experimental DNA-DNA relatedness between strain PI11T and P. indoloxydans JCM 14246T was 49.4%. The draft genome of strain PI11T consisted of 4,884,839 bp. Average nucleotide identity between the genome of strain PI11T and other closely related type strains ranged between 77.25–90.74%. The polar lipid pattern comprised of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylcholine. The major (> 10%) cellular fatty acids were C18:1ω6c/ω7c, C16:1ω6c/ω7c, and C16:0. The DNA G + C content of strain PI11T was 62.4 mol%. Based on the results of polyphasic analysis, strain PI11T was delineated from other closely related type strains. It is proposed that strain PI11T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas sediminis sp. nov. is proposed. The type strain is PI11T (= KCTC 42576T = DSMZ 100245T).

Keywords

Phragmites karka Pseudomonas sediminis sp. nov. polyphasic taxonomy Chilika 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_7549_MOESM1_ESM.pdf (3.2 mb)
Supplementary material, approximately 3.20 MB.

References

  1. Angiuoli, S.V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity, G., Kodira, C.D., Kyrpides, N., Madupu, R., Markowitz, V., et al. 2008. Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMICS 12, 137–141.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anzai, Y., Kim, H., Park, J.Y., Wakabayashi, H., and Oyaizu, H. 2000. Phylogenetic affliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50, 1563–1589.CrossRefPubMedGoogle Scholar
  3. Behera, P., Mahapatra, S., Mohapatra, M., Kim, J.Y., Adhya, T.K., Raina, V., Suar, M., Pattnaik, A.K., and Rastogi, G. 2017a. Salinity and macrophyte drive the biogeography of the sedimentary bacterial communities in a brackish water tropical coastal lagoon. Sci. Total Environ. 595, 472–485.CrossRefPubMedGoogle Scholar
  4. Behera, P., Mohapatra, M., Adhya, T.K., Suar, M., Pattnaik, A.K., and Rastogi, G. 2018. Structural and metabolic diversity of rhizosphere microbial communities of Phragmites karka in a tropical coastal lagoon. Appl. Soil Ecol. 125, 202–212.CrossRefGoogle Scholar
  5. Behera, P., Ramana, V.V., Maharana, B., Joseph, N., Vaishampayan, P., Singh, N.K., Shouche, Y., Bhadury, P., Mishra, S.R., Raina, V., et al. 2017b. Mangrovibacter phragmitis sp. nov., an endophyte isolated from the roots of Phragmites karka. Int. J. Syst. Evol. Microbiol. 67, 1228–1234.CrossRefPubMedGoogle Scholar
  6. Bligh, E.G. and Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.CrossRefPubMedGoogle Scholar
  7. De Ley, J., Cattoir, H., and Reynaerts, A. 1970. The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12, 133–142.CrossRefPubMedGoogle Scholar
  8. Delorme, S., Lemanceau, P., Christen, R., Corberand, T., Meyer, J.M., and Gardan, L. 2002. Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int. J. Syst. Evol. Microbiol. 52, 513–523.CrossRefPubMedGoogle Scholar
  9. Driscoll, J.A., Brody, S.L., and Kollef, M.H. 2007. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67, 351–368.CrossRefPubMedGoogle Scholar
  10. Gillis, M., De Ley, J., and De Cleene, M. 1970. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur. J. Biochem. 12, 143–153.CrossRefPubMedGoogle Scholar
  11. Gonzalez, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.CrossRefPubMedGoogle Scholar
  12. Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., and Tiedje, J.M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91.CrossRefPubMedGoogle Scholar
  13. Greene, R.A., Blum, E.F., Decoro, C.T., Fairchild, R.B., Kaplan, M.T., Landau, J.L., and Sharp, T.R. 1951. Rapid methods for the detection of motility. J. Bacteriol. 62, 347.PubMedPubMedCentralGoogle Scholar
  14. He, T., Li, Z., Sun, Q., Xu, Y., and Ye, Q. 2016. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresour. Technol. 200, 493–499.CrossRefPubMedGoogle Scholar
  15. Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., and Pace, N.R. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82, 6955–6959.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lenaerts, M., Alvarez-Perez, S., de Vega, C., Assche, A.V., Johnson, S.D., Willems, K.A., Herrera, C.M., Jacquemyn, H., and Lievens, B. 2014. Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov., and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Syst. Appl. Microbiol. 37, 402–411.CrossRefPubMedGoogle Scholar
  17. Loveland-Curtze, J., Miteva, V.I., and Brenchley, J.E. 2011. Evaluation of a new fluorimetric DNA-DNA hybridization method. Can. J. Microbiol. 57, 250–255.CrossRefPubMedGoogle Scholar
  18. Ma, J., Xu, L., and Jia, L. 2012. Degradation of polycyclic aromatic hydrocarbons by Pseudomonas sp. JM2 isolated from active sewage sludge of chemical plant. J. Environ. Sci. (China) 24, 2141–2148.CrossRefGoogle Scholar
  19. Majeed, H.A. and AL-Sabhany, R.O.S. 2016. Isolation and identification of Pseudomonas aeruginosa from different sources (soil, wound, urine) and checking its MIC with various antibiotics. Helix 4-5, 795–799.Google Scholar
  20. Manickam, N., Ghosh, A., Jain, R.K., and Mayilraj, S. 2008. Description of a novel indole-oxidizing bacterium Pseudomonas indoloxydans sp. nov., isolated from a pesticide-contaminated site. Syst. Appl. Microbiol. 31, 101–107.CrossRefPubMedGoogle Scholar
  21. Marmur, J. 1961. A procedure for isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3, 208–218.CrossRefGoogle Scholar
  22. Miller, J.R., Koren, S., and Sutton, G. 2010. Assembly algorithms for next-generation sequencing data. Genomics 95, 315–327.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  24. Morris, C.E., Sands, D.C., Vinatzer, B.A., Glaux, C., Guilbaud, C., Buffiere A., Yan, S., Dominguez, H., and Thompson, B.M. 2008. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J. 2, 321–334.CrossRefPubMedGoogle Scholar
  25. Mulamattathil, S.G., Bezuidenhout, C., Mbewe, M., and Ateba, C.N. 2014. Isolation of environmental bacteria from surface and drinking water in Mafikeng, South Africa, and characterization using their antibiotic resistance profiles. J. Pathog. 2014, 371208.PubMedPubMedCentralGoogle Scholar
  26. Murray, R.G.E., Doetsch, R.N., and Robinow, C.F. 1994. Determi native and cytological light microscopy, pp. 21–41. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (ed.), Methods for general and Molecular Bacteriology. American Society for Microbiology, Wahington, DC, USA.Google Scholar
  27. Palleroni, N.J. 2015. Pseudomonas. Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Bergey’s Manual Trust.Google Scholar
  28. Pruesse, E., Peplies, J., and Glöckner, F.O. 2012. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rodriguez-R, L.M. and Konstantinidis, K.T. 2014. Bypassing cultivation to identify bacterial species. Microbe 9, 111–118.Google Scholar
  30. Rogers, J.S. and Swofford, D.L. 1998. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst. Biol. 47, 77–89.CrossRefPubMedGoogle Scholar
  31. Rossello, R., Garcia-Valdes, E., Lalucat, J., and Ursing, J. 1991. Genotypic and phenotypic diversity of Pseudomonas stutzeri. Syst. Appl. Microbiol. 14, 150–157.CrossRefGoogle Scholar
  32. Saitou, N. and Nei, M. 1987. The Neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  33. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.Google Scholar
  34. Simmons, J.S. 1926. A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi. J. Infect. Dis. 39, 209–214.CrossRefGoogle Scholar
  35. Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization, pp. 607–654. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.), Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, USA.Google Scholar
  36. Srichandan, S., Kim, Y.J., Kumar, A., Mishra, D.R., Bhadury, P., Muduli, P.R., Pattnaik, A.K., and Rastogi, G. 2015. Inter annual and cyclone-driven variability in phytoplankton communities of a tropical coastal lagoon. Mar. Poll. Bull. 101, 39–52.CrossRefGoogle Scholar
  37. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Thompson, C.C., Chimetto, L., Edwards, R.A., Swings, J., Stackebrandt, E., and Thompson, F.L. 2013. Microbial genomic taxonomy. BMC Genomics 14, 913.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Toro, M., Ramírez-Bahena, M.H., Velazquez, E., and Peix, A. 2013. Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil. Int. J. Syst. Evol. Microbiol. 63, 4413–4420.CrossRefPubMedGoogle Scholar
  40. Vancanneyt, M., Witt, S., Abraham, W.R., Kersters, K., and Fredrickson, H.L. 1996. Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Sytem. Appl. Microbiol. 19, 528–540.CrossRefGoogle Scholar
  41. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586.CrossRefGoogle Scholar
  42. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar
  43. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhu, W., Lomsadze, A., and Borodovsky, M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Pratiksha Behera
    • 1
    • 2
  • Madhusmita Mahapatra
    • 1
  • Arman Seuylemezian
    • 3
  • Parag Vaishampayan
    • 3
  • V. Venkata Ramana
    • 4
  • Neetha Joseph
    • 4
  • Amaraja Joshi
    • 4
  • Yogesh Shouche
    • 4
  • Mrutyunjay Suar
    • 2
  • Ajit K. Pattnaik
    • 1
  • Gurdeep Rastogi
    • 1
  1. 1.Wetland Research and Training CentreChilika Development AuthorityBalugaonIndia
  2. 2.School of BiotechnologyKIIT UniversityBhubaneswarIndia
  3. 3.Biotechnology and Planetary Protection Group, Jet Propulsion LaboratoryNASA, California Institute of TechnologyPasadenaUSA
  4. 4.National Centre for Microbial ResourceNational Centre for Cell SciencePuneIndia

Personalised recommendations