Bacillus ferrooxidans sp. nov., an iron(II)-oxidizing bacterium isolated from paddy soil

  • Guo-Wei Zhou
  • Xiao-Ru Yang
  • Jian-Qiang Su
  • Bang-Xiao Zheng
  • Yong-Guan Zhu


An endospore-forming bacterium, designated YT-3T, was isolated from a paddy soil in Yingtan, Jiangxi, China. Cells of strain YT-3T were Gram-positive, rod-shaped, facultative anaerobic, catalase, and oxidase positive. The optimum growth temperature and pH were 30°C (ranged from 15 to 50°C) and 6.5–7.0 (ranged from 3 to 11), respectively. Analysis of the 16S rRNA gene sequence showed that strain YT-3T was affiliated to the genus Bacillus and displayed the highest similarity to that of Bacillus drentensis JCM 21707T (98.3%), followed by B. ginsengisoli JCM 17335T (97.8%) and B. fumarioli JCM 21708T (97.0%). The similarity of rpoB gene sequence between strain YT-3T and B. drentensis JCM 21707T, B. ginsengisoli JCM 17335T and B. fumarioli JCM 21708T was 80.4%, 81.5%, and 82.1%, respectively. The genomic DNA G + C content was 44.9 mol%. The predominant respiratory quinone was Menaquinone-7, and meso-diaminopimelic acid was present in the peptidoglycan layer of cell wall. The major fatty acids were C15:0 anteiso (36.2%), C14:0 iso (19.6%), C15:0 iso (17.4%), and C16:0 iso (9.8%). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipids, and ammoniac phospholipids. The DNA-DNA hybridization values between isolate YT-3T and B. drentensis (JCM 21707T), B. ginsengisoli (JCM 17335T), and B. fumarioli (JCM 21708T) were 36.3%, 30.3%, and 25.3%, respectively. On the basis of physiological, genetic and biochemical data, strain YT-3T represented a novel species of the genus Bacillus, for which the name Bacillus ferrooxidans sp. nov was proposed. The type strain is YT-3T (= KCTC 33875T = CCTCC AB 2017049T).


Bacillus ferrooxidans novel species iron(II)-oxidizing bacteria polyphasic taxonomy paddy soil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_7543_MOESM1_ESM.pdf (14 mb)
Supplementary material, approximately 14.0 MB.


  1. Akasaka, H. 2003. Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated ricefield soil. Int. J. Syst. Evol. Microbiol. 53, 1991–1998.CrossRefPubMedGoogle Scholar
  2. Baker, G.C., Smith, J.J., and Cowan, D.A. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55, 541–555.CrossRefPubMedGoogle Scholar
  3. Berenjian, A., Mahanama, R., Talbot, A., Regtop, H., Kavanagh, J., and Dehghani, F. 2012. Advances in menaquinone-7 production by Bacillus subtilis natto: Fed-batch glycerol addition. Am. J. Biochem. Biotechnol. 8, 105–110.CrossRefGoogle Scholar
  4. Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.PubMedPubMedCentralGoogle Scholar
  5. Carlson, H.K., Clark, I.C., Blazewicz, S.J., Iavarone, A.T., and Coates, J.D. 2013. Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J. Bacteriol. 195, 3260–3268.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Estevez-Canales, M., Kuzume, A., Borjas, Z., Fueg, M., Lovley, D., Wandlowski, T., and Esteve-Nunez, A. 2015. A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer. Environ. Microbiol. Rep. 7, 219–226.CrossRefPubMedGoogle Scholar
  7. Felsenstein, J. 1985. Phylogenies from gene frequencies: A statistical problem. Syst. Zool. 34, 300–311.CrossRefGoogle Scholar
  8. Hedrich, S., Schlomann, M., and Johnson, D.B. 2011. The iron-oxidizing proteobacteria. Microbiology 157, 1551–1564.CrossRefPubMedGoogle Scholar
  9. Heyrman, J., Vanparys, B., Logan, N.A., Balcaen, A., Rodriguez-Diaz, M., Felske, A., and De Vos, P. 2004. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int. J. Syst. Evol. Microbiol. 54, 47–57.CrossRefPubMedGoogle Scholar
  10. Hu, S.Z., Morri, K.I., Singh, P.J., Smith, M.K., and Spiro, G.T. 1993. Complete assignment of cytochrome c resonance Raman spectra via enzymic reconstitution with isotopically labeled hemes. J. Am. Chem. Soc. 115, 12446–12458.CrossRefGoogle Scholar
  11. Hu, X.C., Liu, W.M., Luo, M.M., Ren, L.J., Ji, X.J., and Huang, H. 2017. Enhancing menaquinone-7 production by Bacillus natto R127 through the nutritional factors and surfactant. Appl. Biochem. Biotechnol. 182, 1–12.CrossRefGoogle Scholar
  12. Johnson, J.L. and Cummins, C.S. 1972. Cell wall composition and deoxyribonucleic acid similarities among the anaerobic coryneforms, classical propionibacteria, and strains of Arachnia propionica. J. Bacteriol. 109, 1047–1066.PubMedPubMedCentralGoogle Scholar
  13. Klueglein, N. and Kappler, A. 2013. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1-questioning the existence of enzymatic Fe(II) oxidation. Geobiology 11, 180–190.CrossRefPubMedGoogle Scholar
  14. Klueglein, N., Picardal, F., Zedda, M., Zwiener, C., and Kappler, A. 2015. Oxidation of Fe(II)-EDTA by nitrite and by two nitratereducing Fe(II)-oxidizing Acidovorax strains. Geobiology 13, 198–207.CrossRefPubMedGoogle Scholar
  15. Ko, K.S., Kim, J.W., Kim, J.M., Kim, W., Chung, S.I., Kim, I.J., and Kook, Y.H. 2004. Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR gene. Infect. Immun. 72, 5253–5261.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Larkin, M.A., Blackshields, G., Brown, N., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., and Lopez, R. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.CrossRefPubMedGoogle Scholar
  17. Logan, N.A., Lebbe, L., Hoste, B., Goris, J., Forsyth, G., Heyndrickx, M., Murray, B.L., Syme, N., Wynn-Williams, D.D., and De Vos, P. 2000. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int. J. Syst. Evol. Microbiol. 50 1741–1753.CrossRefPubMedGoogle Scholar
  18. Ma, R., Yi, F., and Xuan, L. 2000. Effects of allelochem icals on growth of Bacillus subtilis and its denitrification under anaerobic condition. Acta Ecol. Sin. 20, 452–457.Google Scholar
  19. Mayr, R., Busse, H.J., Worliczek, H.L., Ehling-Schulz, M., and Scherer, S. 2006. Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov. Int. J. Syst. Evol. Microbiol. 56, 1383–1389.CrossRefPubMedGoogle Scholar
  20. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  21. Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., and Belyaev, S.S. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51, 433.CrossRefPubMedGoogle Scholar
  22. Nguyen, N.L., Kim, Y.J., Hoang, V.A., Min, J.W., Liang, Z.Q., and Yang, D.C. 2013. Bacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 63, 855–860.CrossRefPubMedGoogle Scholar
  23. Patzold, R., Keuntje, M., and Anders-von Ahlften, A. 2006. A new approach to non-destructive analysis of biofilms by confocal Raman microscopy. Anal. Bioanal. Chem. 386, 286–292.CrossRefPubMedGoogle Scholar
  24. Patzold, R., Keuntje, M., Theophile, K., Muller, J., Mielcarek, E., Ngezahayo, A., and Anders-von Ahlften, A. 2008. In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy. J. Microbiol. Methods 72, 241–248.CrossRefPubMedGoogle Scholar
  25. Pichinoty, F., Mandel, M., and Garcia, J.L. 1979. The properties of novel mesophilic denitrifying Bacillus cultures found in tropical soils. J. Gen. Microbiol. 115, 419–430.CrossRefGoogle Scholar
  26. Ratering, S. and Schnell, S. 2001. Nitrate-dependent iron(II) oxidation in paddy soil. Environ. Microbiol. 3, 100–109.CrossRefPubMedGoogle Scholar
  27. Shin, S. and Kahng, H.Y. 2017. Cyclobacterium sediminis sp. nov. isolated from a sea cucumber aquaculture farm and emended description of the genus Cyclobacterium. J. Microbiol. 55, 90–95.CrossRefPubMedGoogle Scholar
  28. Smibert, R.M. 1994. Phenotypic characterization, pp. 611–654. In Gerhardt, P., Murray, R.G., Wood, W.A. and Krieg, N.R. (eds.), Methods for general and molecular microbiology. American Society for Microbiology, Washington, D.C., USA.Google Scholar
  29. Staneck, J.L. and Roberts, G.D. 1974. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 28, 226–231.PubMedPubMedCentralGoogle Scholar
  30. Sundaram, P.A., Augustine, R., and Kannan, M. 2012. Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol. Bioprocess Eng. 17, 835–840.CrossRefGoogle Scholar
  31. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Verbaendert, I., Boon, N., Vos, D.P., and Heylen, K. 2011. Denitrification is a common feature among members of the genus Bacillus. Syst. Appl. Microbiol. 34, 385–391.CrossRefPubMedGoogle Scholar
  33. Wang, J.W., Zhang, J.L., Pang, H.C., Zhang, Y.B., Li, Y.Y., and Fan, J.P. 2012. Massilia flava sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 62, 580–585.CrossRefPubMedGoogle Scholar
  34. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37, 463–464.CrossRefGoogle Scholar
  35. Weber, H.W.M., Klein, W., Muller, L., Niess, U.M., and Marahiel, M.A. 2001. Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol. Microbiol. 39, 1321–1329.CrossRefPubMedGoogle Scholar
  36. Yu, A., Li, Y., and Yu, J. 2005. Denitrification of a newly isolated Bacillus strain W2 and its application in aquaculture. J. Microbiol. 25, 77–81.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Guo-Wei Zhou
    • 1
    • 2
  • Xiao-Ru Yang
    • 2
  • Jian-Qiang Su
    • 2
  • Bang-Xiao Zheng
    • 2
    • 3
  • Yong-Guan Zhu
    • 1
    • 2
  1. 1.State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingP. R. China
  2. 2.Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenP. R. China
  3. 3.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations