Journal of Microbiology

, Volume 56, Issue 4, pp 255–263 | Cite as

Proteome analysis reveals global response to deletion of mrflbA in Monascus ruber

  • Qingqing Yan
  • Zhouwei Zhang
  • Yishan Yang
  • Fusheng Chen
  • Yanchun Shao
Microbial Physiology and Biochemistry


Monascus spp. are commonly used for a wide variety of applications in the food and pharmaceutical industries. In previous studies, the knock-out of mrflbA (a putative regulator of the G protein α subunit) in M. ruber led to autolysis of the mycelia, decreased pigmentation and lowered mycotoxin production. Therefore, we aimed to obtain a comprehensive overview of the underlying mechanism of mrflbA deletion at the proteome level. A two-dimensional gel electrophoresis analysis of mycelial proteins indicated that the abundance of 178 proteins was altered in the ΔmrflbA strain, 33 of which were identified with high confidence. The identified proteins are involved in a range of activities, including carbohydrate and amino acid metabolism, hyphal development and the oxidative stress response, protein modification, and the regulation of cell signaling. Consistent with these findings, the activity of antioxidative enzymes and chitinase was elevated in the supernatant of the ΔmrflbA strain. Furthermore, deletion of mrflbA resulted in the transcriptional reduction of secondary metabolites (pigment and mycotoxin). In short, the mutant phenotypes induced by the deletion of mrflbA were consistent with changes in the expression levels of associated proteins, providing direct evidence of the regulatory functions mediated by mrflbA in M. ruber.


Monasucs ruber comparative proteomics development modulation regulator of G protein α subunit secondary metabolites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_7425_MOESM1_ESM.pdf (355 kb)
Supplementary data Table S1. All identified proteins with differential expression in mrflbA-deletion strain and the wild type


  1. Balakrishnan, B., Kim, H.J., Suh, J.W., Chen, C.C., Liu, K.H., Park, S.H., and Kwon, H.J. 2014. Monascus azaphilone pigment biosynthesis employs a dedicated fatty acid synthase for short chain fatty acyl moieties. J. Korean Soc. Appl. Biol. Chem. 57, 191–196.CrossRefGoogle Scholar
  2. Bao, Z., Han, X., Chen, F., Jia, X., Zhao, J., Zhang, C., Yong, C., Tian, S., Zhou, X., and Han, L. 2015. Evidence for the involvement of cofilin in Aspergillus fumigatus internalization into type II alveolar epithelial cells. BMC Microbiol. 15, 1–11.CrossRefGoogle Scholar
  3. Bravo-Cordero, J.J., Magalhaes, M.A.O., Eddy, R.J., Hodgson, L., and Condeelis, J. 2013. Functions of cofilin in cell locomotion and invasion. Nat. Rev. Mol. Cell Biol. 14, 405–415.CrossRefPubMedGoogle Scholar
  4. Carvalho, N.D., Arentshorst, M., Jin, K.M., Meyer, V., and Ram, A.F. 2010. Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl. Microbiol. Biotechnol. 87, 1463–1473.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen, W.P., Chen, R.F., Liu, Q.P., He, Y., He, K., Ding, X.L., Kang, L.J., Guo, X.X., Xie, N.N., Zhou, Y.X., et al. 2017. Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem. Sci. 8, 4917–4925.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Droescher, M., Begitt, A., Marg, A., Zacharias, M., and Vinkemeier, U. 2011. Cytokine-induced paracrystals prolong the activity of signal transducers and activators of transcription (STAT) and provide a model for the regulation of protein solubility by small ubiquitin-like modifier (SUMO). J. Biol. Chem. 286, 18731–18746.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Emri, T., Molnár, Z., Szilágyi, M., and Pócsi, I. 2008. Regulation of autolysis in Aspergillus nidulans. Appl. Biochem. Biotechnol. 151, 211–220.CrossRefPubMedGoogle Scholar
  8. Fang, W., Pei, Y., and Bidochka, M.J. 2007. A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology 153, 1017–1025.CrossRefPubMedGoogle Scholar
  9. Fang, W., Scully, L.R., Zhang, L., Pei, Y., and Bidochka, M.J. 2008. Implication of a regulator of G protein signalling (BbRGS1) in conidiation and conidial thermotolerance of the insect pathogenic fungus Beauveria bassiana. FEMS Microbiol. Lett. 279, 146–156.CrossRefPubMedGoogle Scholar
  10. González-Rodríguez, V.E., Garrido, C., Cantoral, J.M., and Schumacher, J. 2016. The F-actin capping protein is required for hyphal growth and full virulence but is dispensable for septum formation in Botrytis cinerea. Fungal Biol. 120, 1225–1235.CrossRefPubMedGoogle Scholar
  11. Lamoth, F., Juvvadi, P.R., and Steinba, W.J. 2015. Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis. Front. Microbiol. 6, 1–6.CrossRefGoogle Scholar
  12. Li, L., Shao, Y.C., Li, Q., Yang, S., and Chen, F.S. 2010. Identification of Mga1, a G-protein α-subunit gene involving in regulating citrinin and pigment production in Monascus ruber M7. FEMS Microbiol. Lett. 308, 108–114.PubMedGoogle Scholar
  13. Li, L.W., Chen, X.L., Zhang, S.P., Yang, J., Chen, D., Liu, M.X., Zhang, H.F., Zheng, X.B., Wang, P., Li, Y.P., et al. 2015. The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus. Food Addit. Contam. Part A 32, 577–583.CrossRefGoogle Scholar
  14. Lin, W.Y., Chang, J., Hish, C.H., and Pan, T.M. 2007a. Proteome response of Monascus pilosus during rice starch limitation with suppression of Monascorubramine production. J. Agr. Food Chem. 55, 9226–9234.CrossRefGoogle Scholar
  15. Lin, W.Y., Chang, J.Y., Hish, C.H., and Pan, T.M. 2008. Profiling the Monascus pilosus proteome during nitrogen limitation. J. Agr. Food Chem. 56, 433–441.CrossRefGoogle Scholar
  16. Lin, W.Y., Chang, J.Y., Tsai, P.C., and Pan, T.M. 2007b. Metabolic protein patterns and Monascorubrin production revealed through proteomic approach for Monascus pilosus treated with cycloheximide. J. Agr. Food Chem. 55, 5559–5568.CrossRefGoogle Scholar
  17. Lin, W.Y., Ting, Y.C., and Pan, T.M. 2007c. Proteomic response to intracellular proteins of Monascus pilosus grown under phosphate-limited complex medium with different growth rates and pigment production. J. Agr. Food Chem. 55, 467–474.CrossRefGoogle Scholar
  18. Lindsey, R., Cowden, S., Hernández-Rodríguez, Y., and Momany, M. 2010. Septins AspA and AspC are important for normal development and limit the emergence of new growth foci in the multicellular fungus Aspergillus nidulans. Eukaryot. Cell 9, 155–163.CrossRefPubMedGoogle Scholar
  19. Liu, Q.P., Cai, L., Shao, Y.C., Zhou, Y.X., Li, M., Wang, X.H., and Chen, F.S. 2016a. Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism. Fungal Biol. 120, 297–305.CrossRefPubMedGoogle Scholar
  20. Liu, H., Suresh, A., Willard, F.S., Siderovski, D.P., Lu, S., and Naqvi, N.I. 2007. Rgs1 regulates multiple G alpha subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J. 26, 690–700.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liu, Y., Zhang, M., Wang, T., Shi, X., Li, J., Jia, L., Tang, H., and Zhang, L. 2016b. Two acetyl-CoA synthetase isoenzymes are encoded by distinct genes in marine yeast Rhodosporidium diobovatum. Biotechnol. Lett. 38, 417–423.CrossRefPubMedGoogle Scholar
  22. Manfiolli, A.O., de Castro, P.A., Dos Reis, T.F., Dolan, S., Doyle, S., Jones, G., Riaño Pachón, D.M., Ulaş, M., Noble, L.M., Mattern, D. J., et al. 2017. Aspergillus fumigatus protein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence. Cell. Microbiol. 19, e12770.CrossRefGoogle Scholar
  23. Mukherjee, M., Kim, J.E., Park, Y.S., Kolomiets, M.V., and Shim, W.B. 2011. Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels. Mol. Plant Pathol. 12, 479–491.CrossRefPubMedGoogle Scholar
  24. Park, A.R., Cho, A.R., Seo, J.A., Min, K., Son, H., Lee, J.K., Choi, G.J., Kim, J.C., and Lee, Y.W. 2012. Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genet. Biol. 49, 511–520.CrossRefPubMedGoogle Scholar
  25. Patakova, P. 2013. Monascus secondary metabolites: production and biological activity. J. Ind. Microbiol. Biotechnol. 40, 169–181.CrossRefPubMedGoogle Scholar
  26. Propheta, O., Vierula, J., Toporowski, P., Gorovits, R., and Yarden, O. 2001. The Neurospora crassa colonial temperature-sensitive 3 (cot-3) gene encodes protein elongation factor 2. Mol. Genet. Genomics 264, 894–901.CrossRefGoogle Scholar
  27. Ramanujam, R., Yishi, X., Liu, H., and Naqvi, N.I. 2012. Structurefunction analysis of Rgs1 in Magnaporthe oryzae: role of DEP domains in subcellular targeting. PLoS One 7, e41084.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rojas-Avelizapa, I., Cruz-Camarillo, R., Guerrero, I., Rodríguez-Vázquez, R., and Ibarra, E. 1999. Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media. World J. Microbiol. Biotechnol. 15, 299–308.CrossRefGoogle Scholar
  29. Segers, G.C., Regier, J.C., and Nuss, D.L. 2004. Evidence for a role of the regulator of G-protein signaling protein CPRGS-1 in Galpha subunit CPG-1-mediated regulation of fungal virulence, conidiation, and hydrophobin synthesis in the chestnut blight fungus Cryphonectria parasitica. Eukaryot. Cell 3, 1454–1463.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Shao, Y.C., Lei, M., Mao, Z.J., Zhou, Y.X., and Chen, F.S. 2014. Insight into Monascus biology at the genetic level. Appl. Microbiol. Biotechnol. 98, 3911–3922.CrossRefPubMedGoogle Scholar
  31. Shen, G., Wang, Y. L., Whittington, A., Li, L., and Wang, P. 2008. The RGS protein Crg2 regulates pheromone and cyclic AMP signaling in Cryptococcus neoformans. Eukaryot. Cell 7, 1540–1548.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Shimizu, T., Kinoshita, H., and Nihira, T. 2007. Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Appl. Environ. Microbiol. 73, 5097–5103.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shin, K.S., Park, H.S., Kim, Y.H., and Yu, J.H. 2013. Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigates. J. Proteomics 87, 40–52.CrossRefPubMedGoogle Scholar
  34. Xue, C., Hsueh, Y.P., Chen, L., and Heitman, J. 2008. The RGS protein Crg2 both pheromone and cAMP signalling in Cryptococcus neoformans. Mol. Microbiol. 70, 379–395.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yang, Y.S., Li, L., Li, X., Shao, Y.C., and Chen, F.S. 2012. mrflbA, encoding a putative FlbA, is involved in aerial hyphal development and secondary metabolite production in Monascus ruber M-7. Fungal Biol. 116, 225–233.CrossRefPubMedGoogle Scholar
  36. Zhang, H.F., Tang, W., Liu, K.W., Huang, Q., Zhang, X., Yan, X., Chen, Y., Wang, J.S., Qi, Z.Q., Wang, Z.Y., et al. 2011. Eight RGS and RGS-like proteins orchestrate growth, differentiation, and pathogenicity of Magnaporthe oryzae. PLoS Pathog. 7, e1002450.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhang, Z.W., Yang, Y.S., Shao, Y.C., and Chen, F.S. 2014. Study on the physiological and biochemical characteristics of the mrfA-deleted mutant of Monascus ruber during the fermentation process. Food Fermentation Industries 40, 7–11(In Chinese).Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Qingqing Yan
    • 1
  • Zhouwei Zhang
    • 2
  • Yishan Yang
    • 1
  • Fusheng Chen
    • 1
  • Yanchun Shao
    • 1
  1. 1.College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanP. R. China
  2. 2.Institute of Agricultural Products Processing and Nuclear Agricultural TechnologyHubei Academy of Agricultural ScienceWuhanP. R. China

Personalised recommendations