Journal of Microbiology

, Volume 55, Issue 4, pp 311–317 | Cite as

Cot kinase plays a critical role in Helicobacter pylori-induced IL-8 expression

Microbial Pathogenesis and Host-Microbe Interaction


Helicobacter pylori is a major pathogen causing various gastric diseases including gastric cancer. Infection of H. pylori induces pro-inflammatory cytokine IL-8 expression in gastric epithelial cells in the initial inflammatory process. It has been known that H. pylori can modulate Ras-Raf-Mek-Erk signal pathway for IL-8 induction. Recently, it has been shown that another signal molecule, cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, activates Mek and Erk and plays a role in the Erk pathway, similar to MAP3K signal molecule Raf kinase. Therefore, the objective of this study was to determine whether Cot kinase might be involved in IL-8 induction caused by H. pylori infection. AGS gastric epithelial cells were infected by H. pylori strain G27 or its isogenic mutants lacking cagA or type IV secretion system followed by treatment with Cot kinase inhibitor (KI) or siRNA specific for Cot kinase. Activation of Erk was assessed by Western blot analysis and expression of IL-8 was measured by ELISA. Treatment with Cot KI reduced both transient and sustained Erk activation. It also reduced early and late IL-8 secretion in the gastric epithelial cell line. Furthermore, siRNA knockdown of Cot inhibited early and late IL-8 secretion induced by H. pylori infection. Taken together, these results suggest that Cot kinase might play a critical role in H. pylori type IV secretion apparatus-dependent early IL-8 secretion and CagA-dependent late IL-8 secretion as an alternative signaling molecule in the Erk pathway.


Helicobacter pylori cot erk activation IL-8 mapk pathway 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aihara, M., Tsuchimoto, D., Takizawa, H., Azuma, A., Wakebe, H., Ohmoto, Y., Imagawa, K., Kikuchi, M., Mukaida, N., and Matsushima, K. 1997. Mechanisms involved in Helicobacter pyloriinduced interleukin-8 production by a gastric cancer cell line, MKN45. Infect. Immun. 65, 3218–3224.PubMedPubMedCentralGoogle Scholar
  2. Allison, C.C., Kufer, T.A., Kremmer, E., Kaparakis, M., and Ferrero, R.L. 2009. Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. J. Immunol. 183, 8099–8109.CrossRefPubMedGoogle Scholar
  3. Amieva, M.R., Salama, N.R., Tompkins, L.S., and Falkow, S. 2002. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell. Microbiol. 4, 677–690.CrossRefPubMedGoogle Scholar
  4. Argent, R.H., Hale, J.L., El-Omar, E.M., and Atherton, J.C. 2008. Differences in Helicobacter pylori CagA tyrosine phosphorylation motif patterns between western and east asian strains, and influences on interleukin-8 secretion. J. Med. Microbiol. 57, 1062–1067.CrossRefPubMedGoogle Scholar
  5. Ballester, A., Velasco, A., Tobeña, R., and Alemany, S. 1998. Cot kinase activates tumor necrosis factor-α gene expression in a cyclosporin A-resistant manner. J. Biol. Chem. 273, 14099–14106.CrossRefPubMedGoogle Scholar
  6. Blaser, M.J. 1998. Helicobacter pylori and gastric diseases. BMJ 316, 1507–1510.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bodger, K. and Crabtree, J.E. 1998. Helicobacter pylori and gastric inflammation. Br. Med. Bull. 54, 139–150.CrossRefPubMedGoogle Scholar
  8. Bourzac, K.M., Botham, C.M., and Guillemin, K. 2007. Helicobacter pylori CagA induces AGS cell elongation through a cell retraction defect that is independent of Cdc42, Rac1, and Arp2/3. Infect. Immun. 75, 1203–1213.CrossRefPubMedGoogle Scholar
  9. Brandt, S., Kwok, T., Hartig, R., König, W., and Backert, S. 2005. NF-κB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc. Natl. Acad. Sci. USA 102, 9300–9305.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carpenter, B.M., McDaniel, T.K., Whitmire, J.M., Gancz, H., Guidotti, S., Censini, S., and Merrell, D.S. 2007. Expanding the Helicobacter pylori genetic toolbox: modification of an endogenous plasmid for use as a transcriptional reporter and complementation vector. Appl. Environ. Microbiol. 73, 7506–7514.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Censini, S., Lange, C., Xiang, Z., Crabtree, J.E., Ghiara, P., Borodovsky, M., Rappuoli, R., and Covacci, A. 1996. Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. USA 93, 14648–14653.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chiariello, M., Marinissen, M.J., and Gutkind, J.S. 2000. Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation. Mol. Cell. Biol. 20, 1747–1758.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Correa, P. 1992. Human gastric carcinogenesis: a multistep and multifactorial process: first american cancer society award lecture on cancer epidemiology and prevention. Cancer Res. 52, 6735–6740.PubMedGoogle Scholar
  14. Covacci, A., Censini, S., Bugnoli, M., Petracca, R., Burroni, D., Macchia, G., Massone, A., Papini, E., Xiang, Z., Figura, N., et al. 1993. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl. Acad. Sci. USA 90, 5791–5795.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Crabtree, J.E. and Lindley, I.J. 1994. Mucosal interleukin-8 and Helicobacter pylori-associated gastroduodenal disease. Eur. J. Gastroenterol. Hepatol. 6 Suppl. 1, S33–38.PubMedGoogle Scholar
  16. Das, S., Cho, J., Lambertz, I., Kelliher, M.A., Eliopoulos, A.G., Du, K., and Tsichlis, P.N. 2005. Tpl2/cot signals activate ERK, JNK, and NF-κB in a cell-type and stimulus-specific manner. J. Biol. Chem. 280, 23748–23757.CrossRefPubMedGoogle Scholar
  17. Dumaz, N. and Marais, R. 2003. Protein kinase a blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras. J. Biol. Chem. 278, 29819–29823.CrossRefPubMedGoogle Scholar
  18. Dumitru, C.D., Ceci, J.D., Tsatsanis, C., Kontoyiannis, D., Stamatakis, K., Lin, J.H., Patriotis, C., Jenkins, N.A., Copeland, N.G., Kollias, G., et al. 2000. TNF-α induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 103, 1071–1083.CrossRefPubMedGoogle Scholar
  19. Eliopoulos, A.G., Wang, C.C., Dumitru, C.D., and Tsichlis, P.N. 2003. Tpl2 transduces CD40 and TNF signals that activate ERK and regulates IgE induction by CD40. EMBO J. 22, 3855–3864.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fan, X.G., Chua, A., Fan, X.J., and Keeling, P.W. 1995. Increased gastric production of interleukin-8 and tumour necrosis factor in patients with Helicobacter pylori infection. J. Clin. Pathol. 48, 133–136.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fischer, W., Püls, J., Buhrdorf, R., Gebert, B., Odenbreit, S., and Haas, R. 2001. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol. 42, 1337–1348.CrossRefPubMedGoogle Scholar
  22. Galgani, M., Busiello, I., Censini, S., Zappacosta, S., Racioppi, L., and Zarrilli, R. 2004. Helicobacter pylori induces apoptosis of human monocytes but not monocyte-derived dendritic cells: role of the cag pathogenicity island. Infect. Immun. 72, 4480–4485.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Higashi, H., Nakaya, A., Tsutsumi, R., Yokoyama, K., Fujii, Y., Ishikawa, S., Higuchi, M., Takahashi, A., Kurashima, Y., Teishikata, Y., et al. 2004. Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J. Biol. Chem. 279, 17205–17216.CrossRefPubMedGoogle Scholar
  24. Higashi, H., Tsutsumi, R., Fujita, A., Yamazaki, S., Asaka, M., Azuma, T., and Hatakeyama, M. 2002a. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc. Natl. Acad. Sci. USA 99, 14428–14433.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., and Hatakeyama, M. 2002b. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686.CrossRefPubMedGoogle Scholar
  26. Johannessen, C.M., Boehm, J.S., Kim, S.Y., Thomas, S.R., Wardwell, L., Johnson, L.A., Emery, C.M., Stransky, N., Cogdill, A.P., Barretina, J., et al. 2010. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kaiser, F., Cook, D., Papoutsopoulou, S., Rajsbaum, R., Wu, X., Yang, H.T., Grant, S., Ricciardi-Castagnoli, P., Tsichlis, P.N., Ley, S.C., et al. 2009. TPL-2 negatively regulates interferon-β production in macrophages and myeloid dendritic cells. J. Exp. Med. 206, 1863–1871.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kuipers, E.J. 1997. Helicobacter pylori and the risk and management of associated diseases: gastritis, ulcer disease, atrophic gastritis and gastric cancer. Aliment. Pharmacol. Ther. 11 Suppl. 1, 71–88.CrossRefPubMedGoogle Scholar
  29. Lee, H.W., Choi, H.Y., Joo, K.M., and Nam, D.H. 2015. Tumor progression locus 2 (Tpl2) kinase as a novel therapeutic target for cancer: double-sided effects of Tpl2 on cancer. Int. J. Mol. Sci. 16, 4471–4491.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lee, I.O., Kim, J.H., Choi, Y.J., Pillinger, M.H., Kim, S.Y., Blaser, M.J., and Lee, Y.C. 2010. Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J. Biol. Chem. 285, 16042–16050.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lin, X., Cunningham, E.T.Jr., Mu, Y., Geleziunas, R., and Greene, W.C. 1999. The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-κB acting through the NF-κB-inducing kinase and IκB kinases. Immunity 10, 271–280.CrossRefPubMedGoogle Scholar
  32. Marshall, B.J. and Warren, J.R. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311–1315.CrossRefPubMedGoogle Scholar
  33. Meyer-ter-Vehn, T., Covacci, A., Kist, M., and Pahl, H.L. 2000. Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J. Biol. Chem. 275, 16064–16072.CrossRefPubMedGoogle Scholar
  34. Naito, M., Eguchi, H., Goto, Y., Kondo, T., Nishio, K., Ishida, Y., Kawai, S., Okada, R., Hishida, A., Wakai, K., et al. 2010. Associations of plasma IL-8 levels with Helicobacter pylori seropositivity, gastric atrophy, and IL-8 T-251A genotypes. Epidemiol. Infect. 138, 512–518.CrossRefPubMedGoogle Scholar
  35. Neel, B.G., Gu, H., and Pao, L. 2003. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293.CrossRefPubMedGoogle Scholar
  36. Nozawa, Y., Nishihara, K., Peek, R.M.Jr., Nakano, M., Uji, T., Ajioka, H., Matsuura, N., and Miyake, H. 2002. Identification of a signaling cascade for interleukin-8 production by Helicobacter pylori in human gastric epithelial cells. Biochem. Pharmacol. 64, 21–30.CrossRefPubMedGoogle Scholar
  37. Odenbreit, S., Püls, J., Sedlmaier, B., Gerland, E., Fischer, W., and Haas, R. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500.CrossRefPubMedGoogle Scholar
  38. Olbermann, P., Josenhans, C., Moodley, Y., Uhr, M., Stamer, C., Vauterin, M., Suerbaum, S., Achtman, M., and Linz, B. 2010. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 6, e1001069.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Papadakos, K.S., Sougleri, I.S., Mentis, A.F., Hatziloukas, E., and Sgouras, D.N. 2013. Presence of terminal EPIYA phosphorylation motifs in Helicobacter pylori CagA contributes to IL-8 secretion, irrespective of the number of repeats. PLoS One 8, e56291.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Patriotis, C., Makris, A., Bear, S.E., and Tsichlis, P.N. 1993. Tumor progression locus 2 (Tpl-2) encodes a protein kinase involved in the progression of rodent T-cell lymphomas and in T-cell activation. Proc. Natl. Acad. Sci. USA 90, 2251–2255.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pillinger, M.H., Marjanovic, N., Kim, S.Y., Lee, Y.C., Scher, J.U., Roper, J., Abeles, A.M., Izmirly, P.I., Axelrod, M., Pillinger, M.Y., et al. 2007. Helicobacter pylori stimulates gastric epithelial cell MMP-1 secretion via CagA-dependent and -independent ERK activation. J. Biol. Chem. 282, 18722–18731.CrossRefPubMedGoogle Scholar
  42. Ruggiero, P. 2010. Helicobacter pylori and inflammation. Curr. Pharm. Des. 16, 4225–4236.CrossRefPubMedGoogle Scholar
  43. Salmerón, A., Ahmad, T.B., Carlile, G.W., Pappin, D., Narsimhan, R.P., and Ley, S.C. 1996. Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J. 15, 817–826.PubMedPubMedCentralGoogle Scholar
  44. Selbach, M., Moese, S., Meyer, T.F., and Backert, S. 2002. Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect. Immun. 70, 665–671.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sharma, S.A., Tummuru, M.K., Blaser, M.J., and Kerr, L.D. 1998. Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-κB in gastric epithelial cells. J. Immunol. 160, 2401–2407.PubMedGoogle Scholar
  46. Suerbaum, S. and Michetti, P. 2002. Helicobacter pylori infection. New Engl. J. Med. 347, 1175–1186.CrossRefPubMedGoogle Scholar
  47. Torok, A.M., Bouton, A.H., and Goldberg, J.B. 2005. Helicobacter pylori induces interleukin-8 secretion by toll-like receptor 2-and toll-like receptor 5-dependent and -independent pathways. Infect. Immun. 73, 1523–1531.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tsutsumi, R., Takahashi, A., Azuma, T., Higashi, H., and Hatakeyama, M. 2006. Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Mol. Cell. Biol. 26, 261–276.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Oral Biology, Oral Science Research Center, BK21 Plus ProjectYonsei University College of DentistrySeoulRepublic of Korea
  2. 2.Microbiology and Molecular Biology, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral DiseaseStomatology Hospital of Guangzhou Medical UniversityGuangzhouP. R. China

Personalised recommendations