Advertisement

Journal of Microbiology

, Volume 55, Issue 4, pp 296–303 | Cite as

Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb(II) toxicity

  • Young-Joo Yi
  • Jeong-Muk Lim
  • Suna Gu
  • Wan-Kyu Lee
  • Eunyoung Oh
  • Sang-Myeong Lee
  • Byung-Taek Oh
Microbial Physiology and Biochemistry

Abstract

It has been demonstrated that certain lactic acid bacteria (LAB) can sequester metal ions by binding them to their surfaces. In the present study, lead (Pb)-resistant LAB were isolated from kimchi, a Korean fermented food. A total of 96 different LAB strains were isolated, and 52 strains showed lead resistance. Among them, an LAB strain-96 (L-96) identified as Leuconostoc mesenteroides showed remarkable Pb resistance and removal capacity. The maximum adsorption capacity of this strain calculated using the Langmuir isotherm was 60.6 mg Pb/g. In an in vivo experiment, young male mice were provided with water (A), Pb-water (B), or Pb-water+ L-96 (C) during puberty. Lower glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels in Pb-exposed male mice that received strain L-96 as a probiotic were suggestive of reduced hepatotoxicity. Moreover, feces from mice treated with L-96 contained more Pb than feces from untreated mice. Increased Pb elimination likely reduced internal accumulation, and this hypothesis was supported by significantly lower Pb concentrations in kidneys and testes of the mice treated with strain L-96. The motility and ATP content of epididymal spermatozoa were partially restored if strain L-96 was administered. In conclusion, isolated L-96 LAB had lead-biosorption activity and efficiently detoxified lead-poisoned male mice, resulting in recovering male reproductive function. These results suggest the potential use of LAB as a probiotic to protect humans from the adverse effects of Pb exposure.

Keywords

fermentation exopolysaccharides environmental health bioremediation lactic acid bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2017_6642_MOESM1_ESM.pdf (118 kb)
Supplementary material, approximately 117 KB.

References

  1. Akhmetsadykova, S., Konuspayeva, G., Loiseau, G., Baubekova, A., Kanayat, S., Akhmetsadykov, N., and Faye, B. 2013. Protection against lead contamination by strains of lactic acid bacteria from fermented camel milk. Emir. J. Food Agric. 25, 274–279.CrossRefGoogle Scholar
  2. Alexander, B.H., Checkoway, H., Van Netten, C., Muller, C.H., Ewers, T.G., Kaufman, J.D., Mueller, B.A., Vaughan, T.L., and Faustman, E.M. 1996. Semen quality of men employed at a lead smelter. Occup. Environ. Med. 53, 411–416.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Apostoli, P., Kiss, P., Porru, S., Bonde, J.P., and Vanhoorne, M. 1998. Male reproductive toxicity of lead in animals and humans. ASCLEPIOS Study Group. Occup. Environ. Med. 55, 364–374.CrossRefGoogle Scholar
  4. Aryal, M. and Liakopoulou-Kyriakides, M. 2015. Bioremoval of heavy metals by bacterial biomass. Environ. Mon. Assess. 187, 4173–4199.CrossRefGoogle Scholar
  5. Ashraf, M.A., Maah, M.J., and Yusoff, I. 2011. Heavy metals accumulation in plants growing in ex tin mining catchment. Int. J. Environ. Sci. Technol. 8, 401–416.CrossRefGoogle Scholar
  6. Balooch, F.D., Fatemi, S.J., and Iranmanesh, M. 2014. Combined chelation of lead (II) by deferasirox and deferiprone in rats as biological model. BioMetals 27, 89–95.CrossRefPubMedGoogle Scholar
  7. Bhakta, J., Ohnishi, K., Munekage, Y., Iwasaki, K., and Wei, M. 2012. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. J. Appl. Microbiol. 112, 1193–1206.CrossRefPubMedGoogle Scholar
  8. Cappellini, M.D., Bejaoui, M., Agaoglu, L., Canatan, D., Capra, M., Cohen, A., Drelichman, G., Economou, M., Fattoum, S., Kattamis, A., et al. 2011. Iron chelation with deferasirox in adult and pediatric patients with thalassemia major: efficacy and safety during 5 years’ follow-up. Blood 118, 884–893.CrossRefPubMedGoogle Scholar
  9. Delcour, J., Ferain, T., Deghorain, M., Palumbo, E., and Hols, P. 1999. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie van Leeuwenhoek 76, 159–184.CrossRefPubMedGoogle Scholar
  10. El-Nezami, H., Mykkanen, H., Kankaanpaa, P., Salminen, S., and Ahokas, J. 2000. Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum. J. Food Prot. 63, 549–552.CrossRefPubMedGoogle Scholar
  11. Esposito, A., Pagnanelli, F., Lodi, A., Solisio, C., and Veglio, F. 2001. Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy 60, 129–141.CrossRefGoogle Scholar
  12. Feng, M., Chen, X., Li, C., Nurgu, R., and Dong, M. 2012. Isolation and identification of an exopolysaccharide-producing lactic acid bacterium strain from Chinese Paocai and biosorption of Pb(II) by its exopolysaccharide.. Food Sci. 77, T111–T117.CrossRefGoogle Scholar
  13. Gabr, R.M., Hassan, S.H.A., and Shoreit, A.A.M. 2008. Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int. Biodeter. Biodegr. 62, 195–203.CrossRefGoogle Scholar
  14. Halttunen, T., Finell, M., and Salminen, S. 2007a. Arsenic removal by native and chemically modified lactic acid bacteria. Int. J. Food Microbiol. 120, 173–178.CrossRefPubMedGoogle Scholar
  15. Halttunen, T., Salminen, S., and Tahvonen, R. 2007b. Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int. J. Food Microbiol. 114, 30–35.CrossRefPubMedGoogle Scholar
  16. Hernandez-Ochoa, I., Sanchez-Gutierrez, M., Solis-Heredia, M., and Quintanilla-Vega, B. 2006. Spermatozoa nucleus takes up lead during the epididymal maturation altering chromatin condensation. Reprod. Toxicol. 21, 171–178.CrossRefPubMedGoogle Scholar
  17. Ibrahim, F., Halttunen, T., Tahvonen, R., and Salminen, S. 2006. Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Can. J. Microbiol. 52, 877–885.CrossRefPubMedGoogle Scholar
  18. Jarüp, L. 2003. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182.CrossRefPubMedGoogle Scholar
  19. Juresa, D., Blanusa, M., and Kostial, K. 2005. Simultaneous administration of sodium selenite and mercuric chloride decreases efficacy of DMSA and DMPS in mercury elimination in rats. Toxicol. Lett. 155, 97–102.CrossRefPubMedGoogle Scholar
  20. Kinoshita, H., Sohma, Y., Ohtake, F., Ishida, M., Kawai, Y., Kitazawa, H., Saito, T., and Kimura, K. 2013. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Res. Microbiol. 164, 701–709.CrossRefPubMedGoogle Scholar
  21. Kwak, S.H., Cho, Y.M., Noh, G.M., and Om, A.S. 2014. Cancer preventive potential of kimchi lactic acid bacteria (Weissella cibaria, Lactobacillus plantarum). J. Cancer Prev. 19, 253–258.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lead, W.I. 1995. World Health Organization/International Programme on Chemical Safety. Environmental Health Criteria 165. Inorganic Lead. Geneva, Switzerland: World Health Organization.Google Scholar
  23. Martinez-Haro, M., Taggart, M., and Mateo, R. 2010. Pb-Al relationships in waterfowl feces discriminate between sources of Pb exposure. Environ. Pollut. 158, 2485–2489.CrossRefPubMedGoogle Scholar
  24. Monachese, M., Burton, J.P., and Reid, G. 2012. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics. Appl. Environ. Microbiol. 78, 6397–6404.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Moppert, X., Le Costaouec, T., Raguenes, G., Courtois, A., Simon-Colin, C., Crassous, P., Costa, B., and Guezennec, J. 2009. Investigations into the uptake of copper, iron and selenium by a highly sulphated bacterial exopolysaccharide isolated from microbial mats. J. Ind. Microbiol. Biotechnol. 36, 599–604.CrossRefPubMedGoogle Scholar
  26. Mrvcic, J., Butorac, A., Solic, E., Stanzer, D., Bacun-Druzina, V., Cindric, M., and Stehlik-Tomas, V. 2013. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions. World J. Microbiol. Biotechnol. 29, 75–85.CrossRefPubMedGoogle Scholar
  27. Mrvcic, J., Stanzer, D., Solic, E., and Stehlik-Tomas, V. 2012. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J. Microbiol. Biotechnol. 28, 2771–2782.CrossRefPubMedGoogle Scholar
  28. Nwachukwu, M., Feng, H., and Alinnor, J. 2010. Assessment of heavy metal pollution in soil and their implications within and around mechanic villages. Int. J. Environ. Sci. Technol. 7, 347–358.CrossRefGoogle Scholar
  29. Orrhage, K., Annas, A., Nord, C., Brittebo, E., and Rafter, J. 2002. Effects of lactic acid bacteria on the uptake and distribution of the food mutagen Trp-P-2 in mice. Scand J. Gastroenterol. 37, 215–221.CrossRefPubMedGoogle Scholar
  30. Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., and Marhaba, T.F. 2006. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour. Technol. 97, 2321–2329.CrossRefPubMedGoogle Scholar
  31. Perez, J.A.M., Garcia-Ribera, R., Quesada, T., Aguilera, M., Ramos-Cormenzana, A., and Monteoliva-Sanchez, M. 2008. Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World J. Microbiol. Biotechnol. 24, 2699–2704.CrossRefGoogle Scholar
  32. Rawat, A.P., Giri, K., and Rai, J. 2014. Biosorption kinetics of heavy metals by leaf biomass of Jatropha curcas in single and multimetal system. Environ. Monit. Assess. 186, 1679–1687.CrossRefPubMedGoogle Scholar
  33. Schut, S., Zauner, S., Hampe, G., Konig, H., and Claus, H. 2011. Biosorption of copper by wine-relevant Lactobacilli. Int. J. Food Microbiol. 145, 126–131.CrossRefPubMedGoogle Scholar
  34. Serencam, H., Ozdes, D., Duran, C., and Tufekci, M. 2013. Biosorption properties of Morus alba L. for Cd (II) ions removal from aqueous solutions. Environ. Monit. Assess. 185, 6003–6011.CrossRefPubMedGoogle Scholar
  35. Sheng, G.P., Xu, J., Luo, H.W., Li, W.W., Li, W.H., Yu, H.Q., Xie, Z., Wei, S.Q., and Hu, F.C. 2013. Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge. Water Res. 47, 607–614.CrossRefPubMedGoogle Scholar
  36. Shim, J., Kim, J.W., Shea, P.J., and Oh, B.T. 2015. IAA production by Bacillus sp. JH 2-2 promotes Indian mustard growth in the presence of hexavalent chromium. J. Basic Microbiol. 55, 652–658.CrossRefPubMedGoogle Scholar
  37. Sun, H.H., Mao, W.J., Chen, Y., Guo, S.D., Li, H.Y., Qui, X.H., Chen, Y.L., and Xu, J. 2009. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr. Polym. 78, 117–124.CrossRefGoogle Scholar
  38. Swain, M.R., Anandharaj, M., Ray, R.C., and Parveen, R.R. 2014. Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnol. Res. Int. DOI: 10.1155/2014/250424.Google Scholar
  39. Swiergosz, R., Sawicka-Kapusta, K., Nyholm, N., Zwolnska, A., and Orkisz, A. 1998. Effects of environmental metal pollution on breeding populations of pied and collared flycatchers in Niepołomice Forest, Southern Poland. Environ. Pollut. 102, 213–220.CrossRefGoogle Scholar
  40. Taher, A., El-Beshlawy, A., Elalfy, M.S., Al Zir, K., Daar, S., Habr, D., Kriemler-Krahn, U., Hmissi, A., and Al Jefri, A. 2009. Efficacy and safety of deferasirox, an oral iron chelator, in heavily ironoverloaded patients with β-thalassaemia: the ESCALATOR study. Eur. J. Haematol. 82, 458–465.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Vijver, M.G., Van Geste, C.A., Lanno, R.P., Van Straalen, N.M., and Peijnenburg, W.J. 2004. Internal metal sequestration and its ecotoxicological relevance: a review. Environ. Sci. Technol. 38, 4705–4712.CrossRefPubMedGoogle Scholar
  42. Yin, X., Xia, L., Sun, L., Luo, H., and Wang, Y. 2008. Animal excrement: a potential biomonitor of heavy metal contamination in the marine environment. Sci. Total Environ. 399, 179–185.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Young-Joo Yi
    • 1
    • 2
  • Jeong-Muk Lim
    • 1
    • 3
  • Suna Gu
    • 1
  • Wan-Kyu Lee
    • 4
  • Eunyoung Oh
    • 1
  • Sang-Myeong Lee
    • 1
    • 2
  • Byung-Taek Oh
    • 1
    • 3
  1. 1.Division of BiotechnologyChonbuk National UniversityIksanRepublic of Korea
  2. 2.Safety, Environment and Life Science InstituteChonbuk National UniversityIksanRepublic of Korea
  3. 3.Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource SciencesChonbuk National UniversityIksanRepublic of Korea
  4. 4.College of Veterinary MedicineChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations