Journal of Microbiology

, Volume 55, Issue 4, pp 231–236 | Cite as

Plasmodium falciparum apicoplast and its transcriptional regulation through calcium signaling

  • Praveen Rai
  • Drista Sharma
  • Rani Soni
  • Nazia Khatoon
  • Bhaskar Sharma
  • Tarun Kumar Bhatt
Minireview
  • 224 Downloads

Abstract

Malaria has been present since ancient time and remains a major global health problem in developing countries. Plasmodium falciparum belongs to the phylum Apicomplexan, largely contain disease-causing parasites and characterized by the presence of apicoplast. It is a very essential organelle of P. falciparum responsible for the synthesis of key molecules required for the growth of the parasite. Indispensable nature of apicoplast makes it a potential drug target. Calcium signaling is important in the establishment of malaria parasite inside the host. It has been involved in invasion and egress of merozoites during the asexual life cycle of the parasite. Calcium signaling also regulates apicoplast metabolism. Therefore, in this review, we will focus on the role of apicoplast in malaria biology and its metabolic regulation through Ca++ signaling.

Keywords

malaria Plasmodium falciparum apicoplast calcium signaling transcription regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboulaila, M., Munkhjargal, T., Sivakumar, T., Ueno, A., Nakano, Y., Yokoyama, M., Yoshinari, T., Nagano, D., Katayama, K., El-Bahy, N., et al. 2012. Apicoplast-targeting antibacterials inhibit the growth of Babesia parasites. Antimicrob. Agents Chemother. 56, 3196–3206.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agrawal, S., Chung, D.W.D., Ponts, N., van Dooren, G.G., Prudhomme, J., Brooks, C.F., Rodrigues, E.M., Tan, J.C., Ferdig, M.T., Striepen, B., et al. 2013a. An apicoplast localized ubiquitylation system is required for the import of nuclear-encoded plastid proteins. PLoS Pathog. 9, e1003426–e1003426.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Agarwal, S., Singh, M.K., Garg, S., Chitnis, C.E., and Singh, S. 2013b. Ca2+-mediated exocytosis of subtilisin-like protease 1: a key step in egress of Plasmodium falciparum merozoites. Cell. Microbiol. 15, 910–921.CrossRefPubMedGoogle Scholar
  4. Alam, M.M., Solyakov, L., Bottrill, A.R., Flueck, C., Siddiqui, F.A., Singh, S., Mistry, S., Viskaduraki, M., Lee, K., and Hopp, C.S. 2015. Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion. Nat. Commun. 6, 7285.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alves, E., Bartlett, P.J., Garcia, C.R.S., and Thomas, A.P. 2011. Melatonin and IP3-induced Ca2+ release from intracellular stores in the malaria parasite Plasmodium falciparum within infected red blood cells. J. Biol. Chem. 286, 5905–5912.CrossRefPubMedGoogle Scholar
  6. Bansal, A., Singh, S., More, K.R., Hans, D., Nangalia, K., Yogavel, M., Sharma, A., and Chitnis, C.E. 2013. Characterization of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) and its role in microneme secretion during erythrocyte invasion. J. Biol. Chem. 288, 1590–1602.CrossRefPubMedGoogle Scholar
  7. Berridge, M.J., Lipp, P., and Bootman, M.D. 2000. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1, 11–21.CrossRefPubMedGoogle Scholar
  8. Billker, O., Dechamps, S., Tewari, R., Wenig, G., Franke-Fayard, B., and Brinkmann, V. 2004. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell. 117, 503–514.CrossRefPubMedGoogle Scholar
  9. Blackman, M.J. 2008. Malarial proteases and host cell egress: an ‘emerging’cascade. Cell. Microbiol. 10, 1925–1934.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bootman, M.D., Collins, T.J., Peppiatt, C.M., Prothero, L.S., Mac-Kenzie, L., De Smet, P., Travers, M., Tovey, S.C., Seo, J.T., Berridge, M.J., et al. 2001. Calcium signalling–an overview. Semin. Cell. Dev. Biol. 12, 3–10.CrossRefPubMedGoogle Scholar
  11. Bozdech, Z., Llinas, M., Pulliam, B.L., Wong, E.D., Zhu, J., and DeRisi, J.L. 2003. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, e5–E5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brochet, M., Collins, M.O., Smith, T.K., Thompson, E., Sebastian, S., Volkmann, K., Schwach, F., Chappell, L., Gomes, A.R., and Berriman, M. 2014. Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca2+ signals at key decision points in the life cycle of malaria parasites. PLoS Biol. 12, e1001806.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Budimulja, A.S., Syafruddin, Tapchaisri, P., Wilairat, P., and Marzuki, S. 1997. The sensitivity of Plasmodium protein synthesis to prokaryotic ribosomal inhibitors. Mol. Biochem. Parasitol. 84, 137–141.CrossRefPubMedGoogle Scholar
  14. Carruthers, V.B. and Sibley, L.D. 1999. Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol. Microbiol. 31, 421–428.CrossRefPubMedGoogle Scholar
  15. Cheemadan, S., Ramadoss, R., and Bozdech, Z. 2014. Role of calcium signaling in the transcriptional regulation of the apicoplast genome of Plasmodium falciparum. Biomed. Res. Int. 2014, 869401–869401.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Clapham, D.E. 2007. Calcium signaling. Cell. 131, 1047–1058.CrossRefPubMedGoogle Scholar
  17. Cruz, L.N., Wu, Y., Ulrich, H., Craig, A.G., and Garcia, C.R. 2016. Tumor necrosis factor reduces Plasmodium falciparum growth and activates calcium signaling in human malaria parasites. Biochim. Biophys. Acta. 1860, 1489–1497.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dahl, E.L. and Rosenthal, P.J. 2008. Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. Trends Parasitol. 24, 279–284.CrossRefPubMedGoogle Scholar
  19. Dahl, E.L., Shock, J.L., Shenai, B.R., Gut, J., DeRisi, J.L., and Rosenthal, P.J. 2006. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother. 50, 3124–3131.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dawn, A., Singh, S., More, K.R., Siddiqui, F.A., Pachikara, N., Ramdani, G., Langsley, G., and Chitnis, C.E. 2014. The central role of cAMP in regulating Plasmodium falciparum merozoite invasion of human erythrocytes. PLoS Pathog. 10, e1004520.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Divo, A.A., Sartorelli, A.C., Patton, C.L., and Bia, F.J. 1988. Activity of fluoroquinolone antibiotics against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 32, 1182–1186.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Docampo, R., de Souza, W., Miranda, K., Rohloff, P., and Moreno, S.N.J. 2005. Acidocalcisomes? conserved from bacteria to man. Nat. Rev. Microbiol. 3, 251–261.CrossRefPubMedGoogle Scholar
  23. Dvorin, J.D., Martyn, D.C., Patel, S.D., Grimley, J.S., Collins, C.R., Hopp, C.S., Bright, A.T., Westenberger, S., Winzeler, E., and Blackman, M.J. 2010. A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science 328, 910–912.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Eckstein-Ludwig, U., Webb, R.J., Van Goethem, I.D.A., East, J.M., Lee, A.G., Kimura, M., O'Neill, P.M., Bray, P.G., Ward, S.A., and Krishna, S. 2003. Artemisinins target the SERCA of Plasmodium falciparum. Nature 424, 957–961.CrossRefPubMedGoogle Scholar
  25. Foth, B.J. and McFadden, G.I. 2003. The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. Int. Rev. Cytol. 224, 57–110.CrossRefPubMedGoogle Scholar
  26. Furuyama, W., Enomoto, M., Mossaad, E., Kawai, S., Mikoshiba, K., and Kawazu, S.-i. 2014. An interplay between 2 signaling pathways: melatonin-cAMP and IP3-Ca2+ signaling pathways control intraerythrocytic development of the malaria parasite Plasmodium falciparum. Biochem. Biophys. Res. Commun. 446, 125–131.CrossRefPubMedGoogle Scholar
  27. Gao, X., Gunalan, K., Yap, S.S.L., and Preiser, P.R. 2013. Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum. Nat. Commun. 4, 2862.PubMedPubMedCentralGoogle Scholar
  28. Gardner, M.J., Feagin, J.E., Moore, D.J., Spencer, D.F., Gray, M.W., Williamson, D.H., and Wilson, R.J.M. 1991a. Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. Mol. Biochem. Parasitol. 48, 77–88.CrossRefPubMedGoogle Scholar
  29. Gardner, M.J., Williamson, D.H., and Wilson, R.J.M. 1991b. A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol. Biochem. Parasitol. 44, 115–123.CrossRefPubMedGoogle Scholar
  30. Jones, M.L., Cottingham, C., and Rayner, J.C. 2009. Effects of calcium signaling on Plasmodium falciparum erythrocyte invasion and post-translational modification of gliding-associated protein 45 (PfGAP45). Mol. Biochem. Parasitol. 168, 55–62.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Karkare, S., Yousafzai, F., Mitchenall, L.A., and Maxwell, A. 2012. The role of Ca2+ in the activity of Mycobacterium tuberculosis DNA gyrase. Nucleic Acids Res. 40, 9774–9787.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Krishna, S., Woodrow, C., Webb, R., Penny, J., Takeyasu, K., Kimura, M., and East, J.M. 2001. Expression and functional characterization of a Plasmodium falciparum Ca2+-ATPase (PfATP4) belonging to a subclass unique to apicomplexan organisms. J. Biol. Chem. 276, 10782–10787.CrossRefPubMedGoogle Scholar
  33. Kumar, P., Tripathi, A., Ranjan, R., Halbert, J., Gilberger, T., Doerig, C., and Sharma, P. 2014. Regulation of Plasmodium falciparum development by calcium-dependent protein kinase 7 (PfCDPK7). J. Biol. Chem. 289, 20386–20395.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lewit-Bentley, A. and Réty, S. 2000. EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 10, 637–643.CrossRefPubMedGoogle Scholar
  35. Li, J., Matsuoka, H., Mitamura, T., and Horii, T. 2002. Characterization of proteases involved in the processing of Plasmodium falciparum serine repeat antigen (SERA). Mol. Biochem. Parasitol. 120, 177–186.CrossRefPubMedGoogle Scholar
  36. Lim, L. and McFadden, G.I. 2010. The evolution, metabolism and functions of the apicoplast. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 749–763.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lin, T.Y., Nagano, S., and Heddle, J.G. 2015. Functional analyses of the Toxoplasma gondii DNA gyrase holoenzyme: a janus topoisomerase with supercoiling and decatenation abilities. Sci. Rep. 5, 14491.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lourido, S. and Moreno, S.N.J. 2015. The calcium signaling toolkit of the Apicomplexan parasites Toxoplasma gondii and Plasmodium spp. Cell. Calcium. 57, 186–193.CrossRefPubMedGoogle Scholar
  39. Lovett, J.L., Marchesini, N., Moreno, S.N.J., and Sibley, L.D. 2002. Toxoplasma gondii microneme secretion involves intracellular Ca2+ release from inositol 1, 4, 5-triphosphate (IP3)/ryanodinesensitive stores. J. Biol. Chem. 277, 25870–25876.CrossRefPubMedGoogle Scholar
  40. McFadden, G.I. 1996. Plastid in human parasites. Nature 381, 482–482.CrossRefPubMedGoogle Scholar
  41. McFadden, G.I. 2011. The apicoplast. Protoplasma 248, 641–650.CrossRefPubMedGoogle Scholar
  42. Moore, P., Preiser, P., and Williamson, D. 2002. The plastid DNA of the malaria parasite Plasmodium falciparum is replicated by two mechanisms. Mol. Microbiol. 44, 533–533.CrossRefGoogle Scholar
  43. Moreno, S.N. and Docampo, R. 2003. Calcium regulation in protozoan parasites. Curr. Opin. Microbiol. 6, 359–364.CrossRefPubMedGoogle Scholar
  44. Nagamune, K., Moreno, S.N., Chini, E.N., and Sibley, L.D. 2008. Calcium regulation and signaling in Apicomplexan parasites. In Burleigh, B.A. and Soldati-Favre, D. (eds.), Molecular Mechanisms of Parasite Invasion: Subcellular Biochemistry, pp. 70–81. Springer New York, New York, NY, USA.CrossRefGoogle Scholar
  45. Nagamune, K. and Sibley, L.D. 2006. Comparative genomic and phylogenetic analyses of calcium ATPases and calcium-regulated proteins in the apicomplexa. Mol. Biol. Evol. 23, 1613–1627.CrossRefPubMedGoogle Scholar
  46. Nagano, S., Lin, T.Y., Edula, J., and Heddle, J. 2014. Unique features of apicoplast DNA gyrases from Toxoplasma gondii and Plasmodium falciparum. BMC Bioinformatics 15, 416–416.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nagata, T., Iizumi, S., Satoh, K., Ooka, H., Kawai, J., Carninci, P., Hayashizaki, Y., Otomo, Y., Murakami, K., and Matsubara, K. 2004. Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data. Mol. Biol. Evol. 21, 1855–1870.CrossRefPubMedGoogle Scholar
  48. Nisbet, R.E.R., Kurniawan, D.P., Bowers, H.D., and Howe, C.J. 2016. Transcripts in the Plasmodium Apicoplast undergo cleavage at tRNAs and editing, and include antisense sequences. Protist 167, 377–388.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nisbet, R.E.R. and McKenzie, J.L. 2016. Transcription of the apicoplast genome. Mol. Biochem. Parasitol. 210-1, 5–9.Google Scholar
  50. Okamoto, N., Spurck, T.P., Goodman, C.D., and McFadden, G.I. 2009. Apicoplast and mitochondrion in gametocytogenesis of Plasmodium falciparum. Eukaryot. Cell 8, 128–132.CrossRefPubMedGoogle Scholar
  51. Pukrittayakamee, S., Clemens, R., Chantra, A., Nontprasert, A., Luknam, T., Looareesuwan, S., and White, N.J. 2001. Therapeutic responses to antibacterial drugs in vivax malaria. Trans. R. Soc. Trop. Med. Hyg. 95, 524–528.CrossRefPubMedGoogle Scholar
  52. Ranjan, R., Ahmed, A., Gourinath, S., and Sharma, P. 2009. Dissection of mechanisms involved in the regulation of Plasmodium falciparum calcium-dependent protein kinase 4. J. Biol. Chem. 284, 15267–15276.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Robson, K.J.H. and Jennings, M.W. 1991. The structure of the calmodulin gene of Plasmodium falciparum. Mol. Biochem. Parasitol. 46, 19–34.CrossRefPubMedGoogle Scholar
  54. Schuck, D.C., Jordão, A.K., Nakabashi, M., Cunha, A.C., Ferreira, V.F., and Garcia, C.R. 2014. Synthetic indole and melatonin derivatives exhibit antimalarial activity on the cell cycle of the human malaria parasite Plasmodium falciparum. Eur. J. Med. Chem. 78, 375–382.CrossRefPubMedGoogle Scholar
  55. Siden-Kiamos, I., Ecker, A., Nybäck, S., Louis, C., Sinden, R.E., and Billker, O. 2006. Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Mol. Microbiol. 60, 1355–1363.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Singh, S., Alam, M.M., Pal-Bhowmick, I., Brzostowski, J.A., and Chitnis, C.E. 2010. Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog. 6, e1000746–e1000746.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Spillman, N.J., Allen, R.J.W., McNamara, C.W., Yeung, B.K.S., Winzeler, E.A., Diagana, T.T., and Kirk, K. 2013. Na+ regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe 13, 227–237.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tonkin, C.J., Foth, B.J., Ralph, S.A., Struck, N., Cowman, A.F., and McFadden, G.I. 2008. Evolution of malaria parasite plastid targeting sequences. Proc. Natl. Acad. Sci. USA 105, 4781–4785.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vaid, A., Thomas, D.C., and Sharma, P. 2008. Role of Ca2+/calmodulin-PfPKB signaling pathway in erythrocyte invasion by Plasmodium falciparum. J. Biol. Chem. 283, 5589–5597.CrossRefPubMedGoogle Scholar
  60. Waller, R.F. and McFadden, G.I. 2005. The apicoplast: A review of the derived plastid of apicomplexan parasites. Curr. Issues Mol. Biol. 7, 57–80.PubMedGoogle Scholar
  61. Wilson, R.J.M., Denny, P.W., Preiser, P.R., Rangachari, K., Roberts, K., Roy, A., Whyte, A., Strath, M., Moore, D.J., Moore, P.W., et al. 1996. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 261, 155–172.CrossRefPubMedGoogle Scholar
  62. World Health Organization. 2015. WHO word maleria report 2015. WHO.Google Scholar
  63. Wright, G.J. and Rayner, J.C. 2014. Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog. 10, e1003943.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yeoh, S., O'Donnell, R.A., Koussis, K., Dluzewski, A.R., Ansell, K.H., Osborne, S.A., Hackett, F., Withers-Martinez, C., Mitchell, G.H., Bannister, L.H., et al. 2007. Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131, 1072–1083.CrossRefPubMedGoogle Scholar
  65. Zuegge, J., Ralph, S., Schmuker, M., McFadden, G.I., and Schneider, G. 2001. Deciphering apicoplast targeting signals–feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 280, 19–26.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Praveen Rai
    • 1
  • Drista Sharma
    • 1
  • Rani Soni
    • 1
  • Nazia Khatoon
    • 1
  • Bhaskar Sharma
    • 1
  • Tarun Kumar Bhatt
    • 1
  1. 1.School of Life Science, Department of BiotechnologyCentral University of RajasthanBandarSindri, AjmerIndia

Personalised recommendations