Journal of Microbiology

, Volume 55, Issue 4, pp 273–279 | Cite as

Fungal diversity in soils across a gradient of preserved Brazilian Cerrado

  • Ademir Sergio Ferreira de Araujo
  • Walderly Melgaço Bezerra
  • Vilma Maria dos Santos
  • Luis Alfredo Pinheiro Leal Nunes
  • Maria do Carmo Catanho Pereira de Lyra
  • Marcia do Vale Barreto Figueiredo
  • Vania Maria Maciel Melo
Microbial Ecology and Environmental Microbiology

Abstract

The preserved Cerrado from Northeastern Brazil presents different physicochemical properties and plant diversity, which can influence the fungal communities. Therefore, we evaluated the fungal diversity in preserved sites, at Sete Cidades National Park, across a gradient of vegetation that included Campo graminoide, Cerrado stricto sensu, Cerradao, and Floresta decidual. Of all of the operational taxonomic units (OTUs) obtained, the Floresta decidual presented the highest richness. Ascomycota were the most abundant phylum (45%), followed by Basidiomycota (32%). Basal fungi and other phyla accounted for 23% of the total dataset. Agaricomycetes, Eurotiomycetes, Lecanoromycetes, Basidiobolus, Dothideomycetes, and Taphrinomycetes were the most abundant classes of fungi found across the gradient of Cerrado vegetation. In conclusion, our study suggests that the Brazilian Cerrado from Sete Cidades National Park presents a high fungal diversity and includes sources of new fungal species for biotechnological purposes.

Keywords

soil microbiology eukaryotic microorganisms fungi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaral-Zettler, L.A., McCliment, E.A., Ducklow, H.W., and Huse, S.M. 2009. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of smallsubunit ribosomal RNA genes. PLoS One 4, e6372.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnold, A.E. 2011. Endophytic fungi: hidden components of tropical community ecology. In Carson, W. and Schnitzer, S. (eds.). Tropical forest community Ecology. John Wiley & Sons, London, UK.Google Scholar
  3. Arnold, A.E. and Lutzoni, F. 2007. Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 88, 541–549.CrossRefPubMedGoogle Scholar
  4. Babu, A.G., Kim, S.W., Yadav, D.R., Hyum, U., Adhikari, M., and Lee, Y.S. 2015. Penicillium menonorum: a novel fungus to promote growth and nutrient management in cucumber plants. Mycobiology 43, 49–56.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Caporaso, J.G., Bittinger, K., Bushman, F.D., DeSantis, T.Z., Andersen, G.L., and Knight, R. 2010b. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267.CrossRefPubMedGoogle Scholar
  6. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010a. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Castro, A.A.J.F., Martins, F.R., and Fernandes, A.G. 1998. The woody flora of Cerrado vegetation in the State of Piauí, Northeastern Brazil. Edinb. J. Botany 55, 455–472.CrossRefGoogle Scholar
  8. Castro, A.A.J.F., Martins, F.R., Tamashiro, J.Y., and Shepherd, G.J. 1999. How rich is the flora of Brazilian Cerrados? Ann. Missouri Bot. Gard. 86, 192–224.CrossRefGoogle Scholar
  9. Castro, A.P., Quirino, B.F., Pappas, G.Jr., Kurokawa, A.S., Neto, E.L., and Kruger, R.H. 2008. Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields. Arch. Microbiol. 190, 129–139.CrossRefPubMedGoogle Scholar
  10. Castro, A.P., Silva, M.R.S.S., Quirino, B.F., Bustamante, M.M.C., and Krüger, R.H. 2016. Microbial diversity in Cerrado biome (Neotropical Savanna) soils. PLoS One 11, e0148785.CrossRefPubMedGoogle Scholar
  11. Coutinho, L.M. 1978. O conceito de cerrado. Rev. Bras. Bot. 1, 17–23.Google Scholar
  12. Crowther, T.W., Boddy, L., and Jones, T.H. 2012. Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J. 6, 1992–2001.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.CrossRefPubMedGoogle Scholar
  14. Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998.CrossRefPubMedGoogle Scholar
  15. Forzza, R.C., Leitman, P.M., Costa, A., Carvalho, A.A., Peixoto, A.L., Walter, B.M.T., Bicudo, C., Zappi, D., Costa, D.P., Lleras, E., et al. 2010. Catalogo de plantas e fungos do Brasil, v.1, Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, Rio de Janeiro.CrossRefGoogle Scholar
  16. Gerlach, A.C.L., Campos-Santana, M., Gutjahr, M., and Loguercio-Leite, C. 2013. Wood-decaying Agaricomycetes (Basidiomycota, Fungi): new records for the state of Santa Catarina, Brazil. Acta Bot. Bra. 27, 460–463.CrossRefGoogle Scholar
  17. Ghobad-Nejhad, M., Nilsson, R.H., and Hallenberg, N. 2010. Phylogeny and taxonomy of the genus Vuilleminia (Basidiomycota) based on molecular and morphological evidence, with new insights into Corticiales. Taxon 59, 1519–1534.Google Scholar
  18. Gugnani, H.C. 1999. A review of zygomycosis due to Basidiobolus ranarum. Euro. J. Epidemiol. 15, 923–929.CrossRefGoogle Scholar
  19. Hibbett, D.S. 2006. A phylogenetic overview of the Agaricomycotina. Mycologia 98, 917–925.CrossRefPubMedGoogle Scholar
  20. Jumpponen, A. 2003. Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytol. 158, 569–578.CrossRefGoogle Scholar
  21. Kahn, Z.U., Khoursheed, M., Makar, R., Al-Waheeb, S., Al-Bader, I., Al-Muzaini, A., Chandy, R., and Mustafa A.S. 2001. Basidiobolus ranarum as an etiologic agent of gastrointestinal Zygomycosis. J. Clin. Microbiol. 39, 2360–2363.CrossRefGoogle Scholar
  22. Karst, J., Piculel, B., Brigham, C., Booth, M., and Hoeksema, J.D. 2013. Fungal communities in soils along a vegetative ecotone. Mycologia 105, 61–70.CrossRefPubMedGoogle Scholar
  23. Kirk, P.M., Cannon, P.F., Minter, D.W., and Stalpers, J.A. 2008. Ainsworth and Bisby’s Dictionary of the Fungi. (10th ed.), CAB International, Wallingford.Google Scholar
  24. Larsen, J., Jaramillo-López, P., Nájera-Rincon, M., and González-Esquivel, C.E. 2015. Biotic interactions in the rhizosphere in relation to plant and soil nutrient dynamics. J. Soil Sci. Pl. Nutrit. 15, 449–463.Google Scholar
  25. Leeder, A.C., Palma-Guerrero, J., and Glass, N.L. 2011. The social network: deciphering fungal language. Nature. Rev. Microbiol. 9, 440–451.CrossRefGoogle Scholar
  26. Lozupone, C. and Knight, R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ Microbiol. 71, 8228–8235.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lucena, I.C., Amorim, R.S.S., Lobo, F.A., Baldoni, R.N., and Matos, D.M.S. 2014. Spatial heterogeneity of soils of the Cerrado-Pantanal ecotone. Rev. Ci. Agro. 45, 673–682.CrossRefGoogle Scholar
  28. Lutzoni, F., Pagem, M., and Reeb, V. 2011. Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411, 937–940.CrossRefGoogle Scholar
  29. Ma, A., Zhuang, X., Wu, J., Cui, M., Lv, D., and Liu, C. 2013. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil. PLoS One 8, e66146.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Muller, K. 2001. Pharmaceutically relevant metabolites from lichens. Appl. Microbiol. Biotechnol. 59, 9–10.Google Scholar
  31. Newsham. K.K., Fitter, A.H., Watkinson, A.R. 1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol. Evol. 10, 407–411.CrossRefPubMedGoogle Scholar
  32. Oliveira, M.E.A., Martins, F.R., Castro, A.A.J.F., and Santos, J.R. 2007. Classes de cobertura vegetal do Parque Nacional de Sete Cidades (transição campo-floresta) utilizando imagens TM/Landsat, NE do Brasil. In: XIII Simpósio Brasileiro de Sensoriamento Remoto, 2007, Florianópolis. Anais (Proceedings), 13, 1775–1783.Google Scholar
  33. Oliveira, E.C.A.M., Navarrete, A.A., Peluzio, J.M., de Oliveira Junior, W.P., Valadares, A.A., Tsai, S.M., and Morais, P.B. 2016. Structure of fungal communities in sub-irrigated agricultural soil from Cerrado floodplains. Diversity 8, 13–20.CrossRefGoogle Scholar
  34. Paul, E.A. 2014. Soil microbiology, ecology and biochemistry. Academic Press, London, UK.Google Scholar
  35. Posada, R.H., Franco, L.A., Ramos, C., Plazas, L.S., Suárez, J.C, and Alvarez, F. 2008. Effect of physical, chemical and environmental characteristics on arbuscular mycorrhizal fungi in Brachiaria decumbens (Stapf) pastures. J. Appl. Microbiol. 104, 132–140.PubMedGoogle Scholar
  36. Pylro, V.S., Morais, D.K., Oliveira, F.S., Santos, F.G., Lemos, L.N., Oliveira, G., and Roesch, L.F.W. 2016. BMPOS: A flexible and user-friendly tool sets for microbiome studies. Microb. Ecol. 73, 443–447.CrossRefGoogle Scholar
  37. Pyrlo, V.S., Roesch, L.F.W., Ortega, J.M., Amaral, A.M., Tótola, M.R., Hirsch, P.R., Rosado, A.S., Góes-Neto, A., da Silva, A.L.C., Rosa, C.A., et al. 2014. Brazilian Microbiome Project: revealing the unexplored microbial diversity-challenges and prospects. Microb. Ecol. 67, 237–241.CrossRefGoogle Scholar
  38. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–596.CrossRefPubMedGoogle Scholar
  39. Rachid, C.T.C.C., Balieiro, F.C., Fonseca, E.S., Peixoto, R.S., Chaer, G.M., and Tiedje, J.M. 2015. Intercropped silviculture systems, a key to achieving soil fungal community management in Eucalyptus plantations. PLoS One 10, e0118515.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ruggiero, P.G.C., Batalha, M.A., Rivello, P.V., and Meirelles, S.T. 2002. Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 160, 1–16.CrossRefGoogle Scholar
  41. Seneviratne, G. and Indrasena, I.K. 2006. Nitrogen fixation in lichens is important for improved rock weathering. J. Biosci. 31, 639–643.CrossRefPubMedGoogle Scholar
  42. Sugiyama, J., Hosaka, K., and Suh, S. 2006. Early diverging Ascomycota: phylogenetic divergence and related evolutionary enigmas. Mycologia 98, 996–1005.CrossRefPubMedGoogle Scholar
  43. Tedersoo, L., May, T.W., and Smith, M.E. 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263.CrossRefPubMedGoogle Scholar
  44. Wu, L., Wen, C., Qin, Y., Yin, H., Tu, Q., Van Nostrand, J.D., Yuan, T., Yuan, M., Deng, Y., and Zhou, J. 2015. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125–136.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ademir Sergio Ferreira de Araujo
    • 1
  • Walderly Melgaço Bezerra
    • 4
  • Vilma Maria dos Santos
    • 1
  • Luis Alfredo Pinheiro Leal Nunes
    • 1
  • Maria do Carmo Catanho Pereira de Lyra
    • 2
  • Marcia do Vale Barreto Figueiredo
    • 3
  • Vania Maria Maciel Melo
    • 4
  1. 1.Soil Quality Lab., Agricultural Science CenterFederal University of PiauíTeresinaBrazil
  2. 2.Genome Lab.Agronomic Institute of PernambucoRecifeBrazil
  3. 3.Genetic and Molecular Biology Lab., Agricultural Science CenterFederal University of PiauíTeresinaBrazil
  4. 4.Microbial Ecology and Biotechnology Lab.Federal University of CearaFortalezaBrazil

Personalised recommendations