Advertisement

Journal of Microbiology

, Volume 55, Issue 4, pp 280–288 | Cite as

Alteration in the ultrastructural morphology of mycelial hyphae and the dynamics of transcriptional activity of lytic enzyme genes during basidiomycete morphogenesis

  • Elena Vetchinkina
  • Maria Kupryashina
  • Vladimir Gorshkov
  • Marina Ageeva
  • Yuri Gogolev
  • Valentina Nikitina
Microbial Genetics, Genomics and Molecular Biology

Abstract

The morphogenesis of macromycetes is a complex multilevel process resulting in a set of molecular-genetic, physiological-biochemical, and morphological-ultrastructural changes in the cells. When the xylotrophic basidiomycetes Lentinus edodes, Grifola frondosa, and Ganoderma lucidum were grown on wood waste as the substrate, the ultrastructural morphology of the mycelial hyphal cell walls differed considerably between mycelium and morphostructures. As the macromycetes passed from vegetative to generative development, the expression of the tyr1, tyr2, chi1, chi2, exg1, exg2, and exg3 genes was activated. These genes encode enzymes such as tyrosinase, chitinase, and glucanase, which play essential roles in cell wall growth and morphogenesis.

Keywords

basidiomycete morphogenesis gene expression lytic enzymes phenol oxidases cell wall ultrastructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, D.W. 2006. Concentration scales for sugar solutions. J. Chem. Educ. 83, 1489–1491.CrossRefGoogle Scholar
  2. Bartnicki-Garcia, S. 1973. Fundamental aspects of hyphal morphogenesis. Symp. Soc. Gen. Microbiol. 23, 245–257.Google Scholar
  3. Bowman, S.M. and Free, S.J. 2006. The structure and synthesis of the fungal cell wall. Bioassays 28, 799–808.CrossRefGoogle Scholar
  4. Cabib, E., Bowers, B., Sburlati, A., and Silverman, S.J. 1988. Fungal cell wall synthesis: the construction of a biological structure. Microbiol. Sci. 5, 370–375.PubMedGoogle Scholar
  5. Feofilova, E.P. 1983. Fungal Cell Wall. Nauka, Moscow, p. 248.Google Scholar
  6. Feofilova, E.P. 2002. Key role of chitin in fungal cell wall, in Chitin and Chitosan: Production, Properties, and Application, pp. 91–111. Nauka, Moscow, Russia.Google Scholar
  7. Fontaine, T., Hartland, R.P., Beauvais, A., Diaquin, M., and Latge, J.P. 1997. Purification and characterization of an endo-l,3-β-glucanase from Aspergillus fumigatus. Eur. J. Biochem. 243, 315–321.CrossRefPubMedGoogle Scholar
  8. Gull, K. and Newsam, R.J. 1975. Meiosis in basidiomycetous Fungi I. Fine structure of spindle pole body organization. Protoplasma 83, 247–257.CrossRefPubMedGoogle Scholar
  9. Herrera-Estrella, A. and Chet, I. 1999. Chitinases in biological control. In Jolles, P. and Muzarelli, R. (eds.), Chitin and chitinases, pp. 171–184. Birkhausen Verlag, Basel, Switzerland.CrossRefGoogle Scholar
  10. Jenkinson, T.S., Celio, G.J., Padamsee, M., Dentinger, B.T.M., Meyer, M.L., and McLaughlin, D.J. 2008. Conservation of cytoplasmic organization in the cystidia of Suillus species. Mycologia 100, 539–547.CrossRefPubMedGoogle Scholar
  11. Kamada, T., Fujii, T., Nakagawa, T., and Takenaru, T. 1985. Changes in l,3-β-glucanase activities during stipe elongation in Coprinus cinereus. Curr. Microbiol. 12, 251–260.CrossRefGoogle Scholar
  12. Kamzolkina, O.V., Mazheĭka, I.S., Shtaer, O.V., Kudriavtseva, O.A., and Mukhin, V.A. 2014. Endomembrane system of fungi: traditional and modern conceptions. Tsitologiia 56, 549–561.PubMedGoogle Scholar
  13. Kanda, K., Sato, T., Ishii, S., Enei, H., and Ejiri, S. 1996a. Purification and properties of tyrosinase isozymes from the gill of Lentinus edodes fruiting body. Biosci. Biotechnol. Biochem. 60, 1273–1278.CrossRefPubMedGoogle Scholar
  14. Kanda, K., Sato, T., Suzuki, K., Ishi, S., Ejiri, S., and Enei, H. 1996b. Relationships between tyrosinase activity and gill browning during preservation of Lentinus edodes fruit-bodies. Biosci. Biotechnol. Biochem. 60, 479–480.CrossRefPubMedGoogle Scholar
  15. Kozlova, M.V. and Kamzolkina, O.V. 2004. Ultrastructure of the cell wall in vegetative mycelia of Agaricus bisporus. Tsitologiia 46, 191–201.PubMedGoogle Scholar
  16. Matrosova, E.V., Mazheĭka, I.S., Kudriavtseva, O.A., and Kamzolkina, O.V. 2009. Morphogenesis and ultrastructure of basidiomycetes Agaricus and Pleurotus mitochondria. Tsitologiia 51, 490–499.PubMedGoogle Scholar
  17. Mendoza, C.G. 1992. Cell wall structure and protoplast reversion in basidiomycetes. World J. Microbiol. Biotechnol. 1, 36–38.CrossRefGoogle Scholar
  18. Michalenko, G.O., Hohl, H.L., and Rast, D. 1976. Chemistry and architecture of the mycelial wall of Agaricus bisporus. J. Gen. Microbiol. 92, 252–262.CrossRefGoogle Scholar
  19. Osterman, L.A. 1981. Methods for Investigation of Proteins and Nucleic Acids: Electrophoresis and Ultracentrifugation, p. 288. Nauka, Moscow, Russia.Google Scholar
  20. Perry, C.R., Smith, M., Britnell, C.H., Wood, D.A., and Thurston, C.F. 1993. Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J. Gen. Microbiol. 139, 1209–1218.CrossRefPubMedGoogle Scholar
  21. Polacheck, Y. and Rosenberger, R.F. 1975. Autolytic enzymes in hyphae of Aspergillus nidulans: their action on old and newly formed walls. J. Bacteriol. 121, 332–337.PubMedPubMedCentralGoogle Scholar
  22. Raguz, S.I., Yagüe, E., Wood, D.A., and Thurston, C.F. 1992. Isolation and characterization of a cellulose-growth-specific gene from Agaricus bisporus. Gene 119, 183–190.CrossRefPubMedGoogle Scholar
  23. Reynolds, E.S. 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell. Biol. 17, 208–212.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sakamoto, Y., Irie, T., and Sato, T. 2005a. Isolation and characterization of a fruiting body-specific exo-beta-1, 3-glucanase-encoding gene, exg1, from Lentinula edodes. Curr. Genet. 47, 244–252.CrossRefPubMedGoogle Scholar
  25. Sakamoto, Y., Minato, K., Nagai, M., Mizuno, M., and Sato, T. 2005b. Characterization of the Lentinula edodes exg2 gene encoding a lentinan-degrading exo-beta-1, 3-glucanase. Curr. Genet. 48, 195–203.CrossRefPubMedGoogle Scholar
  26. Sakamoto, Y., Nakade, K., and Sato, T. 2009. Characterization of the post-harvest changes in gene transcription in the gill of the Lentinula edodes fruiting body. Curr. Genet. 55, 409–423.CrossRefPubMedGoogle Scholar
  27. Saksena, K.N., Marino, R., Haller, M.N., and Lemke, P.A. 1976. Study on development of Agaricus bisporus by fluorescent microscopy and scanning electron microscopy. J. Bacteriol. 126, 417–428.PubMedPubMedCentralGoogle Scholar
  28. Suh, S.O., Hirata, A., Sugiyama, J., and Komagata, K. 1993. Septal ultrastructure of basidiomycetous yeasts and their taxonomic implications with observations on the ultrastructure of Erythrobasidium hasegawianum and Sympodiomycopsis paphiopedili. Mycologia 85, 30–37.CrossRefGoogle Scholar
  29. Thurston, C.F. 1994. The structure and function fungal laccase. J. Microbiol. 140, 19–26.CrossRefGoogle Scholar
  30. Van Gelder, C., Flurkey, W., and Wichers, H. 1997. Sequence and structural features of plant and fungal tyrosinases. Phytochem. 45, 1309–1323.CrossRefGoogle Scholar
  31. Vetchinkina, E.P. and Nikitina, V.E. 2007. Morphological patterns of mycelial growth and fruition of some strains of an edible xylotrophic basidiomycete Lentinus edodes. Izv. Samar. Nauch. Tsentr. Ross. Akad. Sci. 9, 1085–1090.Google Scholar
  32. Whitaker, J.R. 1995. Food Enzymes: Structure and Function, p. 284. In Wong, D. (ed.), Chapman and Hall.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Elena Vetchinkina
    • 1
  • Maria Kupryashina
    • 1
  • Vladimir Gorshkov
    • 2
    • 3
  • Marina Ageeva
    • 2
  • Yuri Gogolev
    • 2
    • 3
  • Valentina Nikitina
    • 1
  1. 1.Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of Sciences IBPPM RASSaratovRussian Federation
  2. 2.Laboratory of Molecular Biology, Kazan Institute of Biochemistry and Biophysics, Kazan Science CenterRussian Academy of SciencesKazanRussian Federation
  3. 3.Kazan Federal UniversityKazanRussian Federation

Personalised recommendations