Journal of Microbiology

, Volume 55, Issue 4, pp 289–295 | Cite as

Antibacterial compound produced by Pseudomonas aeruginosa strain UICC B-40, an endophytic bacterium isolated from Neesia altissima

  • Rina Hidayati Pratiwi
  • Iman Hidayat
  • Muhammad Hanafi
  • Wibowo Mangunwardoyo
Microbial Physiology and Biochemistry
  • 144 Downloads

Abstract

This study’s aim was to determine the identity of antibacterial compounds produced by Pseudomonas aeruginosa strain UICC B-40 and describe the antibacterial compounds’ mechanisms of action for damaging pathogenic bacteria cells. Isolation and identification of the compounds were carried out using thin layer chromatography (TLC), nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS) analyses. Antibacterial activity was assayed via minimum inhibitory concentration (MIC) and the antibacterial compound mechanism was observed morphologically through scanning electron microscopy (SEM). This study successfully identified the (2E,5E)-phenyltetradeca-2,5-dienoate antibacterial compound (molecular weight 300 g/mol), composed of a phenolic ester, fatty acid and long chain of aliphatic group structures. MIC values for this compound were determined at 62.5 μg/ml against Staphylococcus aureus strain ATCC 25923. The mechanism of the compound involved breaking down the bacterial cell walls through the lysis process. The (2E,5E)-phenyltetradeca-2,5-dienoate compound exhibited inhibitory activity on the growth of Gram-positive bacteria.

Keywords

antibacterial bioactive endophytic bacteria Neesia altissima Pseudomonas aeruginosa strain UICC B-40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berdy, J. 2005. Bioactive microbial metabolites (review article). J. Antibiot. 58, 1–26.CrossRefPubMedGoogle Scholar
  2. Borges, A., Ferreira, C., Saavedra, M.J., and Simöes, M. 2013. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 19, 1–10.CrossRefGoogle Scholar
  3. Boughton, B.W. and Pollock, M.R. 1952. Long-chain unsaturated fatty acids as essential bacterial growth factors: further studies with Corynebacterium ‘Q’. Biochem. J. 53, 261–265.CrossRefGoogle Scholar
  4. Cappuccino, J.G. and Sherman, N. 1999. Microbiology: a laboratory manual, pp. 263–264. Benjamin-Cummings Pub Co., USA.Google Scholar
  5. Dawood, K.F. 2012. A study of antibacterial activity of fatty acids extracted from Pseudomonas sp. LP1 by using chromatography technique. J. Univ. Anbar Pure Sci. 6, 40–45.Google Scholar
  6. Desbois, A.P. 2012. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat. Antiinfect. Drug Discov. 7, 111–122.CrossRefPubMedGoogle Scholar
  7. Desbois, A.P. and Smith, V.J. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85, 1629–1642.CrossRefPubMedGoogle Scholar
  8. El-Deeb, B., Khalaf, F., and Youssuf, G. 2013. Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J. Plant Interact. 8, 56–64.CrossRefGoogle Scholar
  9. El-Shouny, W.A., Al-Baidani, A.R., and Hamza, W.T. 2011. Antimicrobial activity of pyocyanin produced by Pseudomonas aeruginosa isolated from surgical wound-infections. Int. J. Pharm. Med. Sci. 1, 1–7.Google Scholar
  10. Galbraith, H. and Miller, T.B. 1973. Effect of long-chain fatty acids on bacterial respiration and amino acid uptake. J. Appl. Bacteriol. 36, 659–675.CrossRefPubMedGoogle Scholar
  11. Hakim, S.T., Arshed, S., Iqbal, M., and Javaid, S.G. 2007. Vancomycin sensitivity of Staphylococcus aureus isolates from hospital patients in Karachi, Pakistan. Libyan J. Med. 2, 176–179.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Heath, R.J., White, S.W., and Rock, C.O. 2001. Lipid biosynthesis as a target for antibacterial agents. Prog. Lipid Res. 40, 467–497.CrossRefPubMedGoogle Scholar
  13. Hwang, B.K., Lim, S.W., Kim, B.S., Lee, J.Y., and Moon, S.S. 2001. Isolation and in vivo and in vitro antifungal activity of phenyl acetic acid and sodium phenyl acetate from Streptomyces humidus. Appl. Environ. Microbiol. 67, 3739–3745.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kai, J., Matoh, M., and Tsukidate, K. 1999. A new method for preparing electron microscopic specimens of Helicobacter pylori. Med. Electron Microsc. 32, 62–65.CrossRefPubMedGoogle Scholar
  15. Leisinger, T. and Margraff, R. 1979. Secondary metabolites of fluorescent pseudomonads. Microb. Rev. 43, 422–442.Google Scholar
  16. Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E.R.B., Taghavi, S., Mezgeay, M., and van der Lelie, D. 2002. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606.CrossRefGoogle Scholar
  17. Matthijs, S., Wauven, V.C., Cornu, B., Ye, L., Cornelis, P., Thomas, C.M., and Ongena, M. 2014. Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Res. Microbiol. 165, 695–704.CrossRefPubMedGoogle Scholar
  18. Menpara, D. and Chanda, S. 2013. Endophytic Bacteria–Unexplored Reservoir of Antimicrobials for Combating Microbial Pathogens, pp. 1095–1103. In Méndez-Vilaz, A. (ed.), FORMATEX Microbiology Series 4–Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz, Spain.Google Scholar
  19. Nimnoi, P. and Pongslip, N. 2009. Genetic diversity and plantgrowth promoting ability of the indole-3-acetic acid (IAA) synthetic bacteria isolated from agricultural soil as well asrhizosphere, rhizoplane and root tissue of Ficus religiosa L., Leucaena leucocephala, Piper sarmentosum Roxb. Res. J. Agricul. Biol. Sci. 5, 29–41.Google Scholar
  20. Palleroni, N.J. 1992. Present situation of the taxonomy of aerobic pseudomonads. In Galli, E., Silver, S., and Witholt, B. (eds.), Pseudomonas: Molecular Biology and Biotechnology, pp. 105–115. ASM Press. Washington, DC, USA.Google Scholar
  21. Parekh, J., Karathia, N., and Chanda, S. 2006. Screening of some traditionally used medicinal plants for potential antibacterial activity. Indian J. Pharm. Sci. 68, 832–834.CrossRefGoogle Scholar
  22. Pohl, C.H., Kock, J.L.F., and Thibane, V.S. 2011. Antifungal free fatty acids: A Review, pp. 61–71. In Méndez-Vilaz, A. (ed.), FORMATEX Microbiology Series 3–Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz, Spain.Google Scholar
  23. Pollock, M.R., Howard, G.A., and Boughton, B.W. 1949. Longchain unsaturated fatty acids as essential bacterial growth factors; substances able to replace oleic acid for the growth of Corynebacterium “Q” with a note on a possible method for their microbiological assay. Biochem. J. 45, 417–422.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Pratiwi, R.H., Hidayat, I., Hanafi, M., and Mangunwardoyo, W. 2016. Identification and characterization of three endophytic bacteria from Neesia altissima (Malvaceae) antagonistic to diarrhea-causing bacteria. Malays. J. Microbiol. 12, 300–307.Google Scholar
  25. Rattan, A., Kalia, A., and Ahmad, N. 1998. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg. Infect. Dis. 4, 195–209.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ruiz, B., Chávez, A., Forero, A., García-Huante, Y., Sánchez, M., Rocha, D., Sánchez, B., Romero, A., Rodríguez-Sanoja, R., Sánchez, S., et al. 2010. Production of microbial secondary metabolites: regulation by the carbon source. Crit. Rev. Microbiol. 36, 146–167.CrossRefPubMedGoogle Scholar
  27. Seidel, V. and Taylor, P.W. 2004. In vitro activity of extracts and constituents of Pelargonium against rapidly growing mycobacteria. Int. J. Antimicrob. Agents 23, 613–619.CrossRefPubMedGoogle Scholar
  28. Sheu, C.W. and Freese, E. 1973. Lipopolysaccharide layer protection of Gram-negative bacteria against inhibition by long chain fatty acids. J. Bacteriol. 115, 869–875.PubMedPubMedCentralGoogle Scholar
  29. Strobel, G.A. and Daisy, B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67, 491–502.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sun, C.Q., O’Connor, C.J., and Roberton, A.M. 2003. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol. Med. Microbiol. 36, 9–17.CrossRefPubMedGoogle Scholar
  31. Togashi, N., Shiraishi, A., Nishizaka, M., Matsuoka, K., Endo, K., Hamashima, H., and Inoue, Y. 2007. Antibacterial activity of longchain fatty alcohols against Staphylococcus aureus. Molecules 12, 139–148.CrossRefPubMedGoogle Scholar
  32. Van Bambeke, F., Reinert, R.R., Appelbaum, P.C., Tulkens, P.M., and Peetermans, W.E. 2007. Multidrug-resistant Streptococcus pneumoniae infections: current and future therapeutic options. Drugs 67, 2355–2382.CrossRefPubMedGoogle Scholar
  33. Waters, A.E., Contente-Cuomo, T., Buchhagen, J., Liu, C.M., Watson, L., Pierce, K., Foster, J.T., Bowers, J., Driebe, E.M., Engelthaler, D.M., et al. 2011. Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin. Infect. Dis. 52, 1227–1230.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zanatta, Z.G.C., Moura, A.B., Maia, L.C., and Santos, A.S. 2007. Bioassay for selection of biocontroller bacteria against bean common blight (Xanthomonas axonopodis pv. phaseoli). Braz. Microbiol. 38, 511–515.CrossRefGoogle Scholar
  35. Zheng, C.J., Yoo, J., Lee, T., Cho, H., Kim, Y., and Kim, W. 2005. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 579, 5157–5162.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Rina Hidayati Pratiwi
    • 1
    • 2
  • Iman Hidayat
    • 3
  • Muhammad Hanafi
    • 4
  • Wibowo Mangunwardoyo
    • 2
  1. 1.Department of Biological Education, Faculty of Technics, Mathematics and Natural SciencesUniversity of Indraprasta PGRISouth JakartaIndonesia
  2. 2.Department of Biology, Faculty of Mathematics and Natural SciencesUniversity of IndonesiaDepokIndonesia
  3. 3.Microbiology Division, Research Center for BiologyIndonesian Institute of Sciences (LIPI)CibinongIndonesia
  4. 4.Research Center for Chemistry, Indonesian Institute of Sciences (LIPI)PUSPIPTEKSerpongIndonesia

Personalised recommendations