Skip to main content
Log in

Antibacterial compound produced by Pseudomonas aeruginosa strain UICC B-40, an endophytic bacterium isolated from Neesia altissima

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

This study’s aim was to determine the identity of antibacterial compounds produced by Pseudomonas aeruginosa strain UICC B-40 and describe the antibacterial compounds’ mechanisms of action for damaging pathogenic bacteria cells. Isolation and identification of the compounds were carried out using thin layer chromatography (TLC), nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS) analyses. Antibacterial activity was assayed via minimum inhibitory concentration (MIC) and the antibacterial compound mechanism was observed morphologically through scanning electron microscopy (SEM). This study successfully identified the (2E,5E)-phenyltetradeca-2,5-dienoate antibacterial compound (molecular weight 300 g/mol), composed of a phenolic ester, fatty acid and long chain of aliphatic group structures. MIC values for this compound were determined at 62.5 μg/ml against Staphylococcus aureus strain ATCC 25923. The mechanism of the compound involved breaking down the bacterial cell walls through the lysis process. The (2E,5E)-phenyltetradeca-2,5-dienoate compound exhibited inhibitory activity on the growth of Gram-positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berdy, J. 2005. Bioactive microbial metabolites (review article). J. Antibiot. 58, 1–26.

    Article  CAS  PubMed  Google Scholar 

  • Borges, A., Ferreira, C., Saavedra, M.J., and Simöes, M. 2013. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 19, 1–10.

    Article  Google Scholar 

  • Boughton, B.W. and Pollock, M.R. 1952. Long-chain unsaturated fatty acids as essential bacterial growth factors: further studies with Corynebacterium ‘Q’. Biochem. J. 53, 261–265.

    Article  Google Scholar 

  • Cappuccino, J.G. and Sherman, N. 1999. Microbiology: a laboratory manual, pp. 263–264. Benjamin-Cummings Pub Co., USA.

    Google Scholar 

  • Dawood, K.F. 2012. A study of antibacterial activity of fatty acids extracted from Pseudomonas sp. LP1 by using chromatography technique. J. Univ. Anbar Pure Sci. 6, 40–45.

    Google Scholar 

  • Desbois, A.P. 2012. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat. Antiinfect. Drug Discov. 7, 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Desbois, A.P. and Smith, V.J. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85, 1629–1642.

    Article  CAS  PubMed  Google Scholar 

  • El-Deeb, B., Khalaf, F., and Youssuf, G. 2013. Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J. Plant Interact. 8, 56–64.

    Article  CAS  Google Scholar 

  • El-Shouny, W.A., Al-Baidani, A.R., and Hamza, W.T. 2011. Antimicrobial activity of pyocyanin produced by Pseudomonas aeruginosa isolated from surgical wound-infections. Int. J. Pharm. Med. Sci. 1, 1–7.

    Google Scholar 

  • Galbraith, H. and Miller, T.B. 1973. Effect of long-chain fatty acids on bacterial respiration and amino acid uptake. J. Appl. Bacteriol. 36, 659–675.

    Article  CAS  PubMed  Google Scholar 

  • Hakim, S.T., Arshed, S., Iqbal, M., and Javaid, S.G. 2007. Vancomycin sensitivity of Staphylococcus aureus isolates from hospital patients in Karachi, Pakistan. Libyan J. Med. 2, 176–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath, R.J., White, S.W., and Rock, C.O. 2001. Lipid biosynthesis as a target for antibacterial agents. Prog. Lipid Res. 40, 467–497.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, B.K., Lim, S.W., Kim, B.S., Lee, J.Y., and Moon, S.S. 2001. Isolation and in vivo and in vitro antifungal activity of phenyl acetic acid and sodium phenyl acetate from Streptomyces humidus. Appl. Environ. Microbiol. 67, 3739–3745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kai, J., Matoh, M., and Tsukidate, K. 1999. A new method for preparing electron microscopic specimens of Helicobacter pylori. Med. Electron Microsc. 32, 62–65.

    Article  PubMed  Google Scholar 

  • Leisinger, T. and Margraff, R. 1979. Secondary metabolites of fluorescent pseudomonads. Microb. Rev. 43, 422–442.

    CAS  Google Scholar 

  • Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E.R.B., Taghavi, S., Mezgeay, M., and van der Lelie, D. 2002. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606.

    Article  Google Scholar 

  • Matthijs, S., Wauven, V.C., Cornu, B., Ye, L., Cornelis, P., Thomas, C.M., and Ongena, M. 2014. Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Res. Microbiol. 165, 695–704.

    Article  CAS  PubMed  Google Scholar 

  • Menpara, D. and Chanda, S. 2013. Endophytic Bacteria–Unexplored Reservoir of Antimicrobials for Combating Microbial Pathogens, pp. 1095–1103. In Méndez-Vilaz, A. (ed.), FORMATEX Microbiology Series 4–Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz, Spain.

    Google Scholar 

  • Nimnoi, P. and Pongslip, N. 2009. Genetic diversity and plantgrowth promoting ability of the indole-3-acetic acid (IAA) synthetic bacteria isolated from agricultural soil as well asrhizosphere, rhizoplane and root tissue of Ficus religiosa L., Leucaena leucocephala, Piper sarmentosum Roxb. Res. J. Agricul. Biol. Sci. 5, 29–41.

    CAS  Google Scholar 

  • Palleroni, N.J. 1992. Present situation of the taxonomy of aerobic pseudomonads. In Galli, E., Silver, S., and Witholt, B. (eds.), Pseudomonas: Molecular Biology and Biotechnology, pp. 105–115. ASM Press. Washington, DC, USA.

    Google Scholar 

  • Parekh, J., Karathia, N., and Chanda, S. 2006. Screening of some traditionally used medicinal plants for potential antibacterial activity. Indian J. Pharm. Sci. 68, 832–834.

    Article  Google Scholar 

  • Pohl, C.H., Kock, J.L.F., and Thibane, V.S. 2011. Antifungal free fatty acids: A Review, pp. 61–71. In Méndez-Vilaz, A. (ed.), FORMATEX Microbiology Series 3–Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz, Spain.

    Google Scholar 

  • Pollock, M.R., Howard, G.A., and Boughton, B.W. 1949. Longchain unsaturated fatty acids as essential bacterial growth factors; substances able to replace oleic acid for the growth of Corynebacterium “Q” with a note on a possible method for their microbiological assay. Biochem. J. 45, 417–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratiwi, R.H., Hidayat, I., Hanafi, M., and Mangunwardoyo, W. 2016. Identification and characterization of three endophytic bacteria from Neesia altissima (Malvaceae) antagonistic to diarrhea-causing bacteria. Malays. J. Microbiol. 12, 300–307.

    Google Scholar 

  • Rattan, A., Kalia, A., and Ahmad, N. 1998. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg. Infect. Dis. 4, 195–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz, B., Chávez, A., Forero, A., García-Huante, Y., Sánchez, M., Rocha, D., Sánchez, B., Romero, A., Rodríguez-Sanoja, R., Sánchez, S., et al. 2010. Production of microbial secondary metabolites: regulation by the carbon source. Crit. Rev. Microbiol. 36, 146–167.

    Article  CAS  PubMed  Google Scholar 

  • Seidel, V. and Taylor, P.W. 2004. In vitro activity of extracts and constituents of Pelargonium against rapidly growing mycobacteria. Int. J. Antimicrob. Agents 23, 613–619.

    Article  CAS  PubMed  Google Scholar 

  • Sheu, C.W. and Freese, E. 1973. Lipopolysaccharide layer protection of Gram-negative bacteria against inhibition by long chain fatty acids. J. Bacteriol. 115, 869–875.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel, G.A. and Daisy, B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67, 491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, C.Q., O’Connor, C.J., and Roberton, A.M. 2003. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol. Med. Microbiol. 36, 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Togashi, N., Shiraishi, A., Nishizaka, M., Matsuoka, K., Endo, K., Hamashima, H., and Inoue, Y. 2007. Antibacterial activity of longchain fatty alcohols against Staphylococcus aureus. Molecules 12, 139–148.

    Article  CAS  PubMed  Google Scholar 

  • Van Bambeke, F., Reinert, R.R., Appelbaum, P.C., Tulkens, P.M., and Peetermans, W.E. 2007. Multidrug-resistant Streptococcus pneumoniae infections: current and future therapeutic options. Drugs 67, 2355–2382.

    Article  PubMed  Google Scholar 

  • Waters, A.E., Contente-Cuomo, T., Buchhagen, J., Liu, C.M., Watson, L., Pierce, K., Foster, J.T., Bowers, J., Driebe, E.M., Engelthaler, D.M., et al. 2011. Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin. Infect. Dis. 52, 1227–1230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanatta, Z.G.C., Moura, A.B., Maia, L.C., and Santos, A.S. 2007. Bioassay for selection of biocontroller bacteria against bean common blight (Xanthomonas axonopodis pv. phaseoli). Braz. Microbiol. 38, 511–515.

    Article  Google Scholar 

  • Zheng, C.J., Yoo, J., Lee, T., Cho, H., Kim, Y., and Kim, W. 2005. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 579, 5157–5162.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Hidayati Pratiwi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratiwi, R.H., Hidayat, I., Hanafi, M. et al. Antibacterial compound produced by Pseudomonas aeruginosa strain UICC B-40, an endophytic bacterium isolated from Neesia altissima . J Microbiol. 55, 289–295 (2017). https://doi.org/10.1007/s12275-017-6311-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6311-0

Keywords

Navigation