Journal of Microbiology

, Volume 54, Issue 11, pp 774–781 | Cite as

A computationally simplistic poly-phasic approach to explore microbial communities from the Yucatan aquifer as a potential sources of novel natural products

  • Miguel David Marfil-Santana
  • Aileen O’Connor-Sánchez
  • Jorge Humberto Ramírez-Prado
  • Cesar De los Santos-Briones
  • López-Aguiar
  • Korynthia Lluvia
  • Rafael Rojas-Herrera
  • Asunción Lago-Lestón
  • Alejandra Prieto-Davó
Article

Abstract

The need for new antibiotics has sparked a search for the microbes that might potentially produce them. Current sequencing technologies allow us to explore the biotechnological potential of microbial communities in diverse environments without the need for cultivation, benefitting natural product discovery in diverse ways. A relatively recent method to search for the possible production of novel compounds includes studying the diverse genes belonging to polyketide synthase pathways (PKS), as these complex enzymes are an important source of novel therapeutics. In order to explore the biotechnological potential of the microbial community from the largest underground aquifer in the world located in the Yucatan, we used a polyphasic approach in which a simple, non-computationally intensive method was coupled with direct amplification of environmental DNA to assess the diversity and novelty of PKS type I ketosynthase (KS) domains. Our results suggest that the bioinformatic method proposed can indeed be used to assess the novelty of KS enzymes; nevertheless, this in silico study did not identify some of the KS diversity due to primer bias and stringency criteria outlined by the metagenomics pipeline. Therefore, additionally implementing a method involving the direct cloning of KS domains enhanced our results. Compared to other freshwater environments, the aquifer was characterized by considerably less diversity in relation to known ketosynthase domains; however, the metagenome included a family of KS type I domains phylogenetically related, but not identical, to those found in the curamycin pathway, as well as an outstanding number of thiolases. Over all, this first look into the microbial community found in this large Yucatan aquifer and other fresh water free living microbial communities highlights the potential of these previously overlooked environments as a source of novel natural products.

Keywords

natural product discovery polyketide synthase secondary metabolites Yucatan aquifer microbial metagenomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2016_6092_MOESM1_ESM.pdf (1.7 mb)
Supplementary data Fig. S1. Alignement used to design probe showing conserved regions in KS-I sequences

References

  1. Ayuso-Sacido, A. and Genilloud, O. 2004. New PCR primers for the screening of NRPS and PKS-I systems in Actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb. Ecol. 49, 10–24.CrossRefPubMedGoogle Scholar
  2. Baerson, S.R. and Rimando, A.M. 2007. A plethora of polyketides: structures, biological activities and enzymes. ACS Symp. Ser. 955, 2–14.CrossRefGoogle Scholar
  3. Bérdy, J. 2012. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. 65, 441–441.CrossRefPubMedGoogle Scholar
  4. Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Mistry, K., et al. 2014. Pfam: the protein families database. Nucleic Acids Res. 42, 222–230.CrossRefGoogle Scholar
  5. Finn, R.D., Clements, J., and Eddy, S.R. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, 29–37.CrossRefGoogle Scholar
  6. Foerstner, K.U., Doerks, T., Creevey, C.J., Doerks, A., and Bork, P. 2008. A computational screen for type I polyketide synthases in metagenomics shotgun data. PLoS One 3, e3515.CrossRefGoogle Scholar
  7. Gans, J., Woilinsky, M., and Dunbar, J. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390.CrossRefPubMedGoogle Scholar
  8. Haapalainen, M.A., Meriläinen, G., and Wierenga, R.K. 2006. The thiolase superfamily; condensing enzymes with diverse reaction specificities. Trends Biochem. Sci. 31, 64–71.CrossRefPubMedGoogle Scholar
  9. Harvey, A., Edrada-Ebel, R., and Quinn, R.J. 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug. Discov. 14, 111–129.CrossRefPubMedGoogle Scholar
  10. Hill, P., Piel, J., Aris-Brosou, S., Krištufek, V., Boddy, C.N., and Dijkhuizen, L. 2014. Habitat-specific type I polyketide synthases in soils and street sediments. J. Ind. Microbiol. Biotechnol. 41, 75–85.CrossRefPubMedGoogle Scholar
  11. Hopwood, D.A. and Khosla, C. 1992. Genes for polyketide secondary metabolic pathways in microorganisms and plants. Ciba Found. Symp. 171, 88–106.PubMedGoogle Scholar
  12. Jenke-Kodama, H., Börner, T., and Dittmann, E. 2006. Natural biocombinatorics in the polyketide synthase genes of the actinobacterium Streptomyces avermitilis. PLoS Comput. Biol. 2, 1210–1218.CrossRefGoogle Scholar
  13. Keatinge-Clay, A.T. 2012. The estructures of type I polyketide synthases. Nat. Prod. Rep. 29, 1050–1073.CrossRefPubMedGoogle Scholar
  14. Khan, S.T., Musarrat, J., Alkhedhairy, A.A., and Kazuo, S. 2014. Diversity of bacteria and polyketide synthase associated with marine sponge Haliclona sp. Ann. Microbiol. 64, 199–207.CrossRefGoogle Scholar
  15. Lipko, I.A., Kalyuzhnaya, O.V., Kravchenko, O.S., and Parfenova, V.V. 2012. Identification of polyketide synthase genes in genome of Pseudomonas fluorescens strain 28Bb-06 from freshwater sponge Baikalospongia bacillifera. Mol. Biol. 46, 609–611.CrossRefGoogle Scholar
  16. Mesbah, N.M., Abou-El-Ela, S.H., and Wiegel, J. 2006. Novel and unexpected prokaryotic diversity in water and sediments of the akaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb. Ecol. 54, 598–617.CrossRefGoogle Scholar
  17. Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., et al. 2008. The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386–393.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Moffit, C. and Neilan, B.A. 2001. On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genus Nodularia. FEMS Microbiol. Lett. 196, 207–214.CrossRefGoogle Scholar
  19. Nguyena, Q., Merloa, M., Medemaa, M., Jankevicsb, A., Breitlingb, R., and Takanoa, E. 2012. Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Lett. 586, 2177–2183.CrossRefGoogle Scholar
  20. Parsley, L.C., Linneman, J., Goode, A.M., Becklund, K., George, I., Goodman, R.M., Lopanik, N.B., and Liles, M.R. 2011. Polyketide synthase pathways identified from a metagenomic library are derived from soil Acidobacteria. FEMS Microbiol. Ecol. 78, 176–187.CrossRefPubMedGoogle Scholar
  21. Pimentel-Elardo, S.M., Grozdanov, L., Porksch, S., and Hentshcel, U. 2012. Diversity of nonribosomal peptide synthetase genes in the microbial metagenomes of marine sponges. Mar. Drugs 10, 1192–1202.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Reddy, B.V., Kallifidas, D., Kim, J.H., Charlop-Powers, Z., Feng, Z., and Brady, S.F. 2012. Natural product biosynthetic gene diversity in geographically distinct soil microbiomes. Appl. Environ. Microbiol. 78, 3744–3752.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ruiz, B., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M., Rocha, D., Sánchez, B., Rodríguez-Sanoja, R., Sánchez, S., et al. 2010. Production of microbial secondary metabolites: regulation by the carbon source. Crit. Rev. Microbiol. 36, 146–167.CrossRefPubMedGoogle Scholar
  24. Santiago-Sotelo, P. and Pamirez-Prado, J.H. 2012. prfectBLAST: a platform-independent portable front end for the command terminal BLAST+ stand-alone suite. Biotechniques 53, 299–300.CrossRefPubMedGoogle Scholar
  25. Schirmer, A., Gadkari, R., Reeves, C.D., Ibrahim, F., DeLong, E.F., and Hutchinson, C.R. 2005. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol. 71, 4840–4849.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Schloss, P.D. and Handelsman, J. 2006. Toward a census of bacteria in soil. PLoS Comput. Biol. 2, 786–793.CrossRefGoogle Scholar
  27. Shen, B. 2003. Polyketide biosynthesis beyond the type I, II, and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7, 285–295.CrossRefPubMedGoogle Scholar
  28. Smith, R.J., Jeffries, T.C., Roudnew, B., Fitch, A.J., Seymour, J.R., Delpin, M.W., Newton, K., Brown, M.H., and Mitchell, J.G. 2012. Metagenomic comparison of microbial communities inhabiting confined and unconfined aquifer ecosystems. Environ. Microbiol. 14, 240–253.CrossRefPubMedGoogle Scholar
  29. Staunton, J. and Weissman, K.J. 2001. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416.CrossRefPubMedGoogle Scholar
  30. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Trindade-Silva, A.E., Rua, C.P., Andrade, B.G., Vicente, A.C., Silva, G.G., Berlinck, R.G., and Thompson, F.L. 2013. Polyketide synthase gene diversity within the microbiome of the sponge Arenosclera brasiliensis, endemic to the Southern Atlantic Ocean. Appl. Environ. Microbiol. 79, 1598–1605.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Webster, N.S. and Taylor, M.W. 2012. Marine sponges and their microbial symbionts: love and other relationships. Environ. Microbiol. 14, 335–346.CrossRefPubMedGoogle Scholar
  33. Wrighton, C.K., Castekkem, H.C., Wilkins, M.J., Hug, L.A., Sharon, I., Thomas, B.C., Handley, K.M., Mullin, W.S., Nicora, D.C., Singh, A., et al. 2014. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J. 8, 1452–1463.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Woodhouse, N., Brown, F., Thomas, T., and Neilan, B.A. 2013. Deep sequencing of non-riposomal peptide synthetases and polyketide syntases from the microbiomes of Australian marine sponges. ISME J. 7, 1842–1851.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhao, J., Yang, N., and Zeng, R. 2008. Phylogenetic analysis of type I polyketide synthase and nonribosomal peptide synthetase genes in Antarctic sediment. Extremophiles 12, 97–105.CrossRefPubMedGoogle Scholar
  36. Zheng, M. and Kellogg, T. 1994. Analysis of bacterial populations in a basalt aquifer. Can. J. Microbiol. 40, 944–954.CrossRefGoogle Scholar
  37. Ziemert, N., Podell, S., Penn, K., Badger, J.H., Allen, E., and Jensen, P. 2012. The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 7, 1–9.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Miguel David Marfil-Santana
    • 1
  • Aileen O’Connor-Sánchez
    • 1
  • Jorge Humberto Ramírez-Prado
    • 1
  • Cesar De los Santos-Briones
    • 1
  • López-Aguiar
    • 2
  • Korynthia Lluvia
  • Rafael Rojas-Herrera
    • 3
  • Asunción Lago-Lestón
    • 4
  • Alejandra Prieto-Davó
    • 2
  1. 1.Center for Scientific Investigation of Yucatan (CICY)MéridaMexico
  2. 2.School of ChemistryNational Autonomous University of Mexico (UNAM)SisalMexico
  3. 3.School of Chemical EngeneeringAutonomous University of Yucatan (UADY)MéridaMexico
  4. 4.Post Graduate Studies and Research Center of Ensenada (CICESE)EnsenadaMexico

Personalised recommendations