Skip to main content
Log in

Tunable order in colloids of hard magnetic hexaferrite nanoplatelets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Structural ordering in the concentrated magnetic colloids containing 50 × 5 nm hard magnetic disc-like SrFe12O19 nanoparticles was investigated by cryogenic scanning electron microscopy, optical microscopy, magnetic measurements, and small-angle X-ray scattering. It was revealed that macroscopically homogeneous magnetic liquid consists of dynamic threads of stacked nanoparticles. The threads align into quasiperiodic arrays with the distances between individual threads of a few micrometers. They also can form pseudodomain structures with ~ 90° domain boundaries realized through T-type thread interconnects. The effects of magnetic attraction and electrostatic repulsion on the equilibrium interplatelet distance in the threads were studied. It was demonstrated that this distance can be tuned by the control of the particles charge and electric double layer screening from Stern layer thickness (~ 1 nm) to tens of nanometers. It was shown that the permanent magnetic field is not able to cause any structural changes in the ordered magnetic liquid phase, while alternating field draws particles apart by their vibrations. External variation of interparticle distance up to 6% was achieved using an alternating magnetic field of low intensity. Experimental data were complemented by the theoretical models of screened electrostatic interactions between spherical and platelike magnetic particles. The last model provides good predictive power and correlates with the experimental data. The stabilization energy of the condensed phase in the order of 1–10 kBT was derived from the model. An approach allows controlling of an equilibrium interparticle distance and interparticle distance distribution by adjusting the magnetization and surface charge of the particles as well as the ionic strength of the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin, D. C. Protein crystallization in a magnetic field. Prog. Cryst. Growth Charact. Mater. 2015, 61, 1–26.

    Article  CAS  Google Scholar 

  2. Hu, M. H.; Butt, H. J.; Landfester, K.; Bannwarth, M. B.; Wooh, S.; Thérien-Aubin, H. Shaping the assembly of superparamagnetic nanoparticles. ACS Nano 2019, 13, 3015–3022.

    Article  CAS  Google Scholar 

  3. Martínez-Pedrero, F.; Ortega, F.; Codina, J.; Calero, C.; Rubio, R. G. Controlled disassembly of colloidal aggregates confined at fluid interfaces using magnetic dipolar interactions. J. Colloid Interface Sci. 2020, 560, 388–397.

    Article  Google Scholar 

  4. Naud, C.; Thébault, C.; Carrière, M.; Hou, Y. X.; Morel, R.; Berger, F.; Diény, B.; Joisten, H. Cancer treatment by magneto-mechanical effect of particles, a review. Nanoscale Adv. 2020, 2, 3632–3655.

    Article  CAS  Google Scholar 

  5. Vlasova, K. Y.; Piroyan, A.; Le-Deygen, I. M.; Vishwasrao, H. M.; Ramsey, J. D.; Klyachko, N. L.; Golovin, Y. I.; Rudakovskaya, P. G.; Kireev, I. I.; Kabanov, A. V. et al. Magnetic liposome design for drug release systems responsive to super-low frequency alternating current magnetic field (AC MF). J. Colloid Interface Sci. 2019, 552, 689–700.

    Article  CAS  Google Scholar 

  6. Yang, Y. C.; Liu, Q.; Zhao, T. Y.; Ru, Y. F.; Fang, R. X.; Xu, Y. C.; Huang, J.; Liu, M. J. Magnetic-programmable organohydrogels with reconfigurable network for mechanical homeostasis. Nano Res. 2021, 14, 255–259.

    Article  CAS  Google Scholar 

  7. Qi, Y.; Müller, E. W.; Spiering, H.; Gütlich, P. The effect of a magnetic field on the high-spin α low-spin transition in [Fe(phen)2(NCS)2]. Chem. Phys. Lett. 1983, 101, 503–505.

    Article  CAS  Google Scholar 

  8. Narita, F.; Fox, M. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater. 2018, 20, 1700743.

    Article  Google Scholar 

  9. Xue, G. M.; Zhang, P. L.; Li, X. Y.; He, Z. B.; Wang, H. G.; Li, Y. N.; Ce, R.; Zeng, W.; Li, B. A review of giant magnetostrictive injector (GMI). Sens. Actuators A Phys. 2018, 273, 159–181.

    Article  CAS  Google Scholar 

  10. Pal, A.; Malik, V.; He, L.; Erné, B. H.; Yin, Y. D.; Kegel, W. K.; Petukhov, A. V. Tuning the colloidal crystal structure of magnetic particles by external field. Angew. Chem, Int. Ed. 2015, 54, 1803–1807.

    Article  CAS  Google Scholar 

  11. Rupnik, P. M.; Lisjak, D.; Čopič, M.; Čopar, S.; Mertelj, A. Field-controlled structures in ferromagnetic cholesteric liquid crystals. Sci. Adv. 2017, 3, e1701336.

    Article  Google Scholar 

  12. Mertelj, A.; Lampret, B.; Lisjak, D.; Klepp, J.; Kohlbrecher, J.; Čopič, M. Evolution of nematic and ferromagnetic ordering in suspensions of magnetic nanoplatelets. Soft Matter 2019, 15, 5412–5420.

    Article  CAS  Google Scholar 

  13. Faraudo, J.; Andreu, J. S.; Camacho, J. Understanding diluted dispersions of superparamagnetic particles under strong magnetic fields: A review of concepts, theory and simulations. Soft Matter 2013, 9, 6654–6664.

    Article  CAS  Google Scholar 

  14. Vasilescu, C.; Latikka, M.; Knudsen, K. D.; Garamus, V. M.; Socoliuc, V.; Turcu, R.; Tombácz, E.; Susan-Resiga, D.; Ras, R. H. A.; Vékás, L. High concentration aqueous magnetic fluids: Structure, colloidal stability, magnetic and flow properties. Soft Matter 2018, 14, 6648–6666.

    Article  CAS  Google Scholar 

  15. Mertelj, A.; Lisjak, D. Ferromagnetic nematic liquid crystals. Liq. Cryst. Rev. 2017, 5, 1–33.

    Article  CAS  Google Scholar 

  16. Mertelj, A.; Lisjak, D.; Drofenik, M.; Čopič, M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature 2013, 504, 237–241.

    Article  CAS  Google Scholar 

  17. Nabeel Rashin, M.; Hemalatha, J. Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid. Ultrasonics 2014, 54, 834–840.

    Article  CAS  Google Scholar 

  18. Lukatskaya, M. R.; Trusov, L. A.; Eliseev, A. A.; Lukashin, A. V.; Jansen, M.; Kazin, P. E.; Napolskii, K. S. Controlled way to prepare quasi-1D nanostructures with complex chemical composition in porous anodic alumina. Chem. Commun. 2011, 47, 2396–2398.

    Article  CAS  Google Scholar 

  19. Sun, L.; Hao, Y.; Chien, C. L.; Searson, P. C.; Searson, P. C. Tuning the properties of magnetic nanowires. IBM J. Res. Dev. 2005, 49, 79–102.

    Article  CAS  Google Scholar 

  20. Trusov, L. A.; Vasiliev, A. V.; Lukatskaya, M. R.; Zaytsev, D. D.; Jansen, M.; Kazin, P. E. Stable colloidal solutions of strontium hexaferrite hard magnetic nanoparticles. Chem. Commun. 2014, 50, 14581–14584.

    Article  CAS  Google Scholar 

  21. Liu, Q. K.; Ackerman, P. J.; Lubensky, T. C.; Smalyukh, I. I. Biaxial ferromagnetic liquid crystal colloids. Proc. Natl. Acad. Sci. USA 2016, 113, 10479–10484.

    Article  CAS  Google Scholar 

  22. Anokhin, E. O.; Trusov, L. A.; Kozlov, D. A.; Chumakov, R. G.; Sleptsova, A. E.; Uvarov, O. V.; Kozlov, M. I.; Petukhov, D. I.; Eliseev, A. A.; Kazin, P. E. Silica coated hard-magnetic strontium hexaferrite nanoparticles. Adv. Powder Technol. 2019, 30, 1976–1984.

    Article  CAS  Google Scholar 

  23. Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Copie, M. et al. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates. Nat. Commun. 2016, 7, 10394.

    Article  CAS  Google Scholar 

  24. Eliseev, A. A.; Eliseev, A. A.; Trusov, L. A.; Chumakov, A. P.; Boesecke, P.; Anokhin, E. O.; Vasiliev, A. V.; Sleptsova, A. E.; Gorbachev, E. A.; Korolev, V. V. et al. Rotational dynamics of colloidal hexaferrite nanoplates. Appl. Phys. Lett. 2018, 113, 113106.

    Article  Google Scholar 

  25. Grigoriev, S. V.; Syromyatnikov, A. V.; Chumakov, A. P.; Grigoryeva, N. A.; Napolskii, K. S.; Roslyakov, I. V.; Eliseev, A. A.; Petukhov, A. V.; Eckerlebe, H. Nanostructures: Scattering beyond the born approximation. Phys. Rev. B 2010, 81, 125405.

    Article  Google Scholar 

  26. Colloidal Magnetic Fluids; Odenbach, S., Ed.; Lecture Notes in Physics; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009, 763.

    Google Scholar 

  27. Napolskii, K. S.; Roslyakov, I. V.; Eliseev, A. A.; Petukhov, A. V.; Byelov, D. V.; Grigoryeva, N. A.; Bouwman, W. G.; Lukashin, A. V.; Kvashnina, K. O.; Chumakov, A. P. et al. Long-range ordering in anodic alumina films: A microradian x-ray diffraction study. J. Appl. Crystallogr. 2010, 43, 531–538.

    Article  CAS  Google Scholar 

  28. Martínez-Pedrero, F.; Tirado-Miranda, M.; Schmitt, A.; Callejas-Fernández, J. Primary and secondary bonds in field induced aggregation of electric double layered magnetic particles. Langmuir 2009, 25, 6658–6664.

    Article  Google Scholar 

  29. Faraudo, J.; Camacho, J. Cooperative magnetophoresis of superparamagnetic colloids: Theoretical aspects. Colloid Polym. Sci. 2010, 288, 207–215.

    Article  CAS  Google Scholar 

  30. Eliseev, A. A.; Lukashin, A. V. Functional Nanomaterials; Fizmatlit: Moscow, 2010.

    Google Scholar 

  31. Vokoun, D.; Beleggia, M.; Heller, L.; Šittner, P. Magnetostatic interactions and forces between cylindrical permanent magnets. J. Magn. Magn. Mater. 2009, 321, 3758–3763.

    Article  CAS  Google Scholar 

  32. Hribar Boštjančič, P.; Tomšič, M.; Jamnik, A.; Lisjak, D.; Mertelj, A. Electrostatic interactions between barium hexaferrite nanoplatelets in alcohol suspensions. J. Phys. Chem. C 2019, 123, 23272–23279.

    Article  Google Scholar 

  33. Agra, R.; Trizac, E.; Bocquet, L. The interplay between screening properties and colloid anisotropy: Towards a reliable pair potential for disc-like charged particles. Eur. Phys. J. E 2004, 15, 345–357.

    Article  CAS  Google Scholar 

  34. Gorbachev, E. A.; Trusov, L. A.; Sleptsova, A. E.; Anokhin, E. O.; Zaitsev, D. D.; Vasiliev, A. V.; Eliseev, A. A.; Kazin, P. E. Synthesis and magnetic properties of the exchange-coupled SrFe10.7Al1.3O19/Co composite. Mendeleev Commun. 2018, 28, 401–403.

    Article  CAS  Google Scholar 

  35. Brown, M. A.; Goel, A.; Abbas, Z. Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew. Chem., Int. Ed. 2016, 55, 3790–3794.

    Article  CAS  Google Scholar 

  36. Bacri, J. C.; Perzynski, R.; Shliomis, M. I.; Burde, G. I. “Negative-viscosity” effect in a magnetic fluid. Phys. Rev. Lett. 1995, 75, 2128–2131.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In the part concerning synthesis of Al substituted hexaferrite nanoparticles the work was supported by the Russian Science Foundation (RSF) (No. 20-73-10129). AnAE acknowledge RFBR (No. 18-29-19105) for support in part of SAXS characterization technique development for stacked layered structures. We acknowledge the European Synchrotron Radiation Facility for provision of beamtime and the staff of ID-02 beamline for technical support during the experiments. The authors are also thankful to the Lomonosov Moscow State University Program of Development for the support of instrumental studies. The equipment of the Ural Center for Shared Use Modern Nanotechnology of Ural Federal University was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem A. Eliseev.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliseev, A.A., Trusov, L.A., Anokhin, E.O. et al. Tunable order in colloids of hard magnetic hexaferrite nanoplatelets. Nano Res. 15, 898–906 (2022). https://doi.org/10.1007/s12274-021-3572-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3572-z

Keywords

Navigation