3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting


Cobalt phosphide (CoP) is considered to be a potential candidate in the field of electrocatalysis due to its low-cost, abundant resources and high electrochemical stability. However, there is a great space for further improvement of its electrocatalytic performance since its charge transfer rate and catalytic activity have not reached a satisfactory level. Herein, we design and fabricate a three dimensional urchins like V-doped CoP with different amounts of V-doping on nickel foam electrode. The V-doped CoP/NF electrode with optimized amounts of V-doping (10%) exhibits outstanding hydrogen evolution reaction (HER) performance under universal-pH conditions and preeminent oxygen evolution reaction (OER) performance in alkaline media. Notably, the assembled water-splitting cell displays a cell voltage of only 1.53 V at 10 mA·cm−2 and has excellent durability, much better than many reported related bifunctional catalysts. The experiment results and theoretical analysis revealed that vanadium atoms replace cobalt atoms in CoP lattice. Vanadium doping can not only raise the density of electronic states near the Fermi level enhancing the conductivity of the catalyst, but can also optimize the free energy of hydrogen and oxygen-containing intermediates adsorption over CoP, thus promoting its catalytic activity. Moreover, the unique nanostructure of the catalyst provides the various shortened channels for charge transfer and reactant/electrolyte diffusion, which accelerates the electrocatalytic process. Also, the in situ growth strategy can improve the conductivity and stability of the catalyst.

This is a preview of subscription content, access via your institution.


  1. [1]

    Wu, Y. W.; Wang, H.; Ji, S.; Pollet, B. G.; Wang, X. Y.; Wang, R. F. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 2020, 13, 2098–2105.

    CAS  Article  Google Scholar 

  2. [2]

    Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. L. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447–454.

    CAS  Article  Google Scholar 

  3. [3]

    Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

    CAS  Article  Google Scholar 

  4. [4]

    Yang, D. X.; Zhu, Q. G; Han, B. X. Electroreduction of CO2 in ionic liquid-based electrolytes. Innovation 2020, 1, 100016.

    Article  Google Scholar 

  5. [5]

    Liu, T. Y.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299–3309.

    CAS  Article  Google Scholar 

  6. [6]

    Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

    CAS  Article  Google Scholar 

  7. [7]

    Willinger, E.; Massué, C.; Schlögl, R.; Willinger, M. G. Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 2017, 139, 12093–12101.

    CAS  Article  Google Scholar 

  8. [8]

    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    CAS  Article  Google Scholar 

  9. [9]

    Xue, H. Y.; Zhang, H. Q.; Fricke, S.; Lüther, M.; Yang, Z. J.; Meng, A. L.; Bremser, W.; Li, Z. J. Scalable and energy-efficient synthesis of CoxP for overall water splitting in alkaline media by high energy ball milling. Sustainable Energy Fuels 2020, 4, 1723–1729.

    CAS  Article  Google Scholar 

  10. [10]

    Tang, C.; Zhang, R.; Lu, W. B.; He, L. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P. Fe-Doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 2017, 29, 1602441.

    Article  Google Scholar 

  11. [11]

    Liu, T. T.,; Ma, X.; Liu, D. N.; Hao, S.; Du, G.; Ma, Y. J.; Asiri, A. M.; Sun, X. P.; Chen, L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal. 2017, 7, 98–102.

    CAS  Article  Google Scholar 

  12. [12]

    Shi, J. H.; Qiu, F.; Yuan, W. B.; Guo, M. M.; Lu, Z. H. Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chem. Eng. J. 2021, 403, 126312.

    CAS  Article  Google Scholar 

  13. [13]

    Zhang, R.; Tang, C.; Kong, R. M.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. P. Al-doped CoP nanoarray: A durable water-splitting electrocatalyst with superhigh activity. Nanoscale 2017, 9, 4793–4800.

    CAS  Article  Google Scholar 

  14. [14]

    Li, X. M.; Li, S. S.; Yoshida, A.; Sirisomboonchai, S.; Tang, K. Y.; Zuo, Z. J.; Hao, X. G.; Abudula, A.; Guan, G. Q. Mn doped CoP nanoparticle clusters: An efficient electrocatalyst for hydrogen evolution reaction. Catal. Sci. Technol. 2018, 8, 4407–4412.

    CAS  Article  Google Scholar 

  15. [15]

    Gao, W.; Yan, M.; Cheung, H. Y.; Xi, Z. M.; Zhou, X. M.; Qin, Y. B.; Wong, C. Y.; Ho, J. C.; Chang, C. R.; Qu, Y. Q. Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy 2017, 38, 290–296.

    CAS  Article  Google Scholar 

  16. [16]

    Cao, L. M.; Hu, Y. W.; Tang, S. F.; Iljin, A.; Wang, J. W.; Zhang, Z. M.; Lu, T. B. Fe-CoP electrocatalyst derived from a bimetallic Prussian blue analogue for large-current-density oxygen evolution and overall water splitting. Adv. Sci. 2018, 5, 1800949.

    Article  Google Scholar 

  17. [17]

    Hu, G. J.; Xiang, J. X.; Li, J.; Liu, P.; Ali, R. N.; Xiang, B. Urchinlike ternary cobalt phosphosulfide as high-efficiency and stable bifunctional electrocatalyst for overall water splitting. J. Catal. 2019, 371, 126–134.

    CAS  Article  Google Scholar 

  18. [18]

    Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

    CAS  Article  Google Scholar 

  19. [19]

    Ren, Z. G.; Ren, X. C.; Zhang, L.; Fu, C. H.; Li, X. F.; Zhang, Y. X.; Gao, B.; Yang, L. J.; Chu, P. K.; Huo, K. F. Tungsten-doped CoP nanoneedle arrays grown on carbon cloth as efficient bifunctional electrocatalysts for overall water splitting. ChemElectroChem 2019, 6, 5229–5236.

    CAS  Article  Google Scholar 

  20. [20]

    Ji, L. L.; Wang, J. Y.; Teng, X.; Meyer, T. J.; Chen, Z. F. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020, 10, 412–419.

    CAS  Article  Google Scholar 

  21. [21]

    Liu, J. L.; Gao, Y.; Tang, X. X.; Zhan, K.; Zhao, B.; Xia, B. Y.; Yan, Y. Metal-organic framework-derived hierarchical ultrathin CoP nanosheets for overall water splitting. J. Mater. Chem. A 2020, 8, 19254–19261.

    CAS  Article  Google Scholar 

  22. [22]

    Zhu, W. X.; Zhang, R.; Qu, F. L.; Asiri, A. M.; Sun, X. P. Design and application of foams for electrocatalysis. ChemCatChem 2017, 9, 1721–1743.

    CAS  Article  Google Scholar 

  23. [23]

    Hou, J. G.; Sun, Y. Q.; Li, Z. W.; Zhang, B.; Cao, S. Y.; Wu, Y. Z.; Gao, Z. M.; Sun, L. C. Electrical behavior and electron transfer modulation of nickel—copper nanoalloys confined in nickel—copper nitrides nanowires array encapsulated in nitrogen-doped carbon framework as robust bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater. 2018, 28, 1803278.

    Article  Google Scholar 

  24. [24]

    Cao, S.; You, N.; Wei, L.; Huang, C.; Fan, X. M.; Shi, K.; Yang, Z. H.; Zhang, W. X. CoP microscale prism-like superstructure arrays on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Inorg. Chem. 2020, 59, 8522–8531.

    CAS  Article  Google Scholar 

  25. [25]

    Yuan, W. Y.; Wang, X. Y.; Zhong, X. L.; Li, C. M. CoP nanoparticles in situ grown in three-dimensional hierarchical nanoporous carbons as superior electrocatalysts for hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 20720–20729.

    CAS  Article  Google Scholar 

  26. [26]

    Qin, J. F.; Lin, J. H.; Chen, T. S.; Liu, D. P.; Xie, J. Y.; Guo, B. Y.; Wang, L.; Chai, Y. M.; Dong, B. Facile synthesis of V-doped CoP nanoparticles as bifunctional electrocatalyst for efficient water splitting. J. Energy Chem. 2019, 39, 182–187.

    Article  Google Scholar 

  27. [27]

    Huang, Z. P.; Chen, Z. Z.; Chen, C. B.; Lv, C. C; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373–382.

    CAS  Article  Google Scholar 

  28. [28]

    Li, W. J.; Yang, Q. R.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Cobalt phosphide as a new anode material for sodium storage. J. Power Sources 2015, 294, 627–632.

    CAS  Article  Google Scholar 

  29. [29]

    Suo, N.; Han, X. Q.; Chen, C.; He, X, Q.; Dou, Z. Y.; Lin, Z. H.; Cui, L. L.; Xiang, J. B. Engineering vanadium phosphide by iron doping as bifunctional electrocatalyst for overall water splitting. Electrochim. Acta 2020, 333, 135531.

    CAS  Article  Google Scholar 

  30. [30]

    Wen, L. L.; Yu, J.; Xing, C. C.; Liu, D. L.; Lyu, X. J.; Cai, W. P.; Li, X. Y. Flexible vanadium-doped Ni2P nanosheet arrays grown on carbon cloth for an efficient hydrogen evolution reaction. Nanoscale 2019, 11, 4198–4203.

    CAS  Article  Google Scholar 

  31. [31]

    Chen, D.; Lu, R. H.; Pu, Z. H.; Zhu, J. W.; Li, H. W.; Liu, F.; Hu, S.; Luo, X.; Wu, J. S.; Zhao, Y. et al. Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Appl. Catal. B: Environ. 2020, 279, 119396.

    CAS  Article  Google Scholar 

  32. [32]

    Li, Y. J.; Mao, Z. F.; Wang, Q.; Li, D. B.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 390, 124556.

    CAS  Article  Google Scholar 

  33. [33]

    Zhang, S. G.; Gao, G. H.; Zhu, H.; Cai, L. J.; Jiang, X. D.; Lu, S. L.; Duan, F.; Dong, W. F.; Chai, Y.; Du, M. L. In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting. Sci. Bull. 2020, 65, 640–650.

    CAS  Article  Google Scholar 

  34. [34]

    Zhang, Y.; Guo, H. R.; Li, X. P.; Du, J.; Ren, W. L.; Song, R. A 3D multi-interface structure of coral-like Fe-Mo-S/Ni3S2@NF using for high-efficiency and stable overall water splitting. Chem. Eng. J. 2021, 404, 126483.

    CAS  Article  Google Scholar 

  35. [35]

    Lim, J. W.; Jung, J. W.; Kim, N. Y.; Lee, G. Y.; Lee, H. J.; Lee, Y. H.; Choi, D. S.; Yoon, K. R.; Kim, Y. H.; Kim, I. D. et al. N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery. Energy Storage Mater. 2020, 32, 517–524.

    Article  Google Scholar 

Download references


The work reported here was supported by the National Natural Science Foundation of China (No. 52072196). We acknowledge the National Supercomputing Center in Shenzhen, P. R. China for their computations assistance.

Author information



Corresponding authors

Correspondence to Zhenjiang Li or Chuansheng Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Meng, A., Zhang, H. et al. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3359-2

Download citation


  • overall water-splitting
  • V-doping
  • urchins like
  • density functional theory (DFT)
  • density of states (DOS)