The influence of H2O and O2 on the optoelectronic properties of inverted quantum-dot light-emitting diodes

Abstract

The influence of H2O and O2 on the performances of Mg-doped zinc oxide (ZnMgO) and ZnMgO-based inverted quantum-dot light-emitting diodes (QLEDs) are studied. With the involvement of H2O from ambience, ZnMgO exhibits a high conductivity, whereas the resultant QLEDs show a low efficiency. The efficiency of QLEDs can be enhanced by annealing ZnMgO in H2O-free glovebox; however, the uniformity and the current of the devices are degraded due to the presence of O2, which adsorbs on the surface of ZnMgO and captures the free electrons of ZnMgO. By exposing the devices with ultraviolet (UV) irradiation, the adsorbed O2 can be released, consequently leading to the increase of driving current. Our work discloses the influence of the annealing ambience on the conductivity of ZnMgO, and reveals the interaction of H2O/O2 and UV with the ZnMgO and its effect on the performance of the resultant inverted QLEDs, which could help the community to better understand the mechanisms of ZnMgO-based QLEDs.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

    CAS  Article  Google Scholar 

  2. [2]

    Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.

    CAS  Article  Google Scholar 

  3. [3]

    Deng, Y. Z.; Lin, X.; Fang, W.; Di, D. W.; Wang, L. J.; Friend, R. H.; Peng, X. G.; Jin, Y. Z. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309.

    CAS  Article  Google Scholar 

  4. [4]

    Zhang, H.; Su, Q.; Chen, S. M. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nat. Commun. 2020, 11, 2826.

    CAS  Article  Google Scholar 

  5. [5]

    Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

    CAS  Article  Google Scholar 

  6. [6]

    Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

    CAS  Article  Google Scholar 

  7. [7]

    Xiang, C. Y.; Wu, L. J.; Lu, Z. Z.; Li, M. L.; Wen, Y. W.; Yang, Y. X.; Liu, W. Y.; Zhang, T.; Cao, W. R.; Tsang, S. W. et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 2020, 11, 1646.

    Article  Google Scholar 

  8. [8]

    Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

    CAS  Article  Google Scholar 

  9. [9]

    Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.

    CAS  Article  Google Scholar 

  10. [10]

    Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    CAS  Article  Google Scholar 

  11. [11]

    Ahn, M. W.; Park, K. S.; Heo, J. H.; Park, J. G.; Kim, D. W.; Choi, K. J.; Lee, J. H.; Hong, S. H. Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 2008, 93, 263103.

    Article  Google Scholar 

  12. [12]

    Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys. 2017, 267, 242–261.

    CAS  Article  Google Scholar 

  13. [13]

    Fortunato, E. M. C.; Barquinha, P. M. C.; Pimentel, A. C. M. B. G.; Gonçalves, A. M. F.; Marques, A. J. S.; Martins, R. F. P.; Pereira, L. M. N. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl. Phys. Lett. 2004, 85, 2541–2543.

    CAS  Article  Google Scholar 

  14. [14]

    Carcia, P. F.; McLean, R. S.; Reilly, M. H.; Nunes, G Jr. Transparent ZnO thin-film transistor fabricated by Rf magnetron sputtering. Appl. Phys. Lett. 2003, 82, 1117–1119.

    CAS  Article  Google Scholar 

  15. [15]

    Kim, D.; Yoon, S.; Jeong, Y.; Kim, Y.; Kim, B.; Hong, M. Role of adsorbed H2O on transfer characteristics of solution-processed zinc tin oxide thin-film transistors. Appl. Phys. Express 2012, 5, 021101.

    Article  Google Scholar 

  16. [16]

    Jeong, J. K.; Yang, H. W.; Jeong, J. H.; Mo, Y. G.; Kim, H. D. Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 123508.

    Article  Google Scholar 

  17. [17]

    Manor, A.; Katz, E. A.; Tromholt, T.; Krebs, F. C. Electrical and photo-induced degradation of ZnO layers in organic photovoltaics. Adv. Energy Mater. 2011, 1, 836–843.

    CAS  Article  Google Scholar 

  18. [18]

    Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108.

    CAS  Article  Google Scholar 

  19. [19]

    Li, Y. B.; Valle, F. D.; Simonnet, M.; Yamada, I.; Delaunay, J. J. Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires. Appl. Phys. Lett. 2009, 94, 023110.

    Article  Google Scholar 

  20. [20]

    Khranovskyy, V.; Eriksson, J.; Lloyd-Spetz, A.; Yakimova, R.; Hultman, L. Effect of oxygen exposure on the electrical conductivity and gas sensitivity of nanostructured ZnO films. Thin Solid Films 2009, 517, 2073–2078.

    CAS  Article  Google Scholar 

  21. [21]

    Chang, J. J.; Chang, K. L.; Chi, C. Y.; Zhang, J.; Wu, J. S. Water induced zinc oxide thin film formation and its transistor performance. J. Mater. Chem. C 2014, 2, 5397–5403.

    CAS  Article  Google Scholar 

  22. [22]

    Li, Q. H.; Gao, T.; Wang, Y. G.; Wang, T. H. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl. Phys. Lett. 2005, 86, 123117.

    Article  Google Scholar 

  23. [23]

    Park, J. S.; Jeong, J. K.; Chung, H. J.; Mo, Y. G.; Kim, H. D. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 2008, 92, 072104.

    Article  Google Scholar 

  24. [24]

    Suresh, A.; Muth, J. F. Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Appl. Phys. Lett. 2008, 92, 033502.

    Article  Google Scholar 

  25. [25]

    Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

    CAS  Article  Google Scholar 

  26. [26]

    Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294.

    Article  Google Scholar 

  27. [27]

    Müller, J.; Lupton, J. M.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller, H. Monitoring surface charge movement in single elongated semiconductor nanocrystals. Phys. Rev. Lett. 2004, 93, 167402.

    Article  Google Scholar 

  28. [28]

    Wood, V.; Panzer, M. J.; Halpert, J. E.; Caruge, J. M.; Bawendi, M. G.; Bulović, V. Selection of metal oxide charge transport layers for colloidal quantum dot LEDs. ACS Nano 2009, 3, 3581–3586.

    CAS  Article  Google Scholar 

  29. [29]

    Reeves, G. K.; Harrison, H. B. Obtaining the specific contact resistance from transmission line model measurements. IEEE Electron Device Lett. 1982, 3, 111–113.

    Article  Google Scholar 

  30. [30]

    Su, Q.; Zhang, H.; Sun, Y. Z.; Sun, X. W.; Chen, S. M. Enhancing the performance of quantum-dot light-emitting diodes by postmetallization annealing. ACS Appl. Mater. Interfaces 2018, 10, 23218–23224.

    CAS  Article  Google Scholar 

  31. [31]

    Sengupta, G.; Ahluwalia, H. S.; Banerjee, S.; Sen, S. P. Chemisorption of water vapor on zinc oxide. J. Colloid Interface Sci. 1979, 69, 217–224.

    CAS  Article  Google Scholar 

  32. [32]

    Sun, Y. Z.; Jiang, Y. B.; Peng, H. R.; Wei, J. L.; Zhang, S. D.; Chen, S. M. Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer. Nanoscale 2017, 9, 8962–8969.

    CAS  Article  Google Scholar 

  33. [33]

    Cheng, T.; Wang, F. Z.; Sun, W. D.; Wang, Z. B.; Zhang, J.; You, B. G.; Li, Y.; Hayat, T.; Alsaed, A.; Tan, Z. A. High-performance blue quantum dot light-emitting diodes with balanced charge injection. Adv. Electron. Mater. 2019, 5, 1800794.

    Article  Google Scholar 

  34. [34]

    Trunk, M.; Venkatachalapathy, V.; Galeckas, A.; Kuznetsov, A. Y. Deep level related photoluminescence in ZnMgO. Appl. Phys. Lett. 2010, 97, 211901.

    Article  Google Scholar 

  35. [35]

    Chen, Z. N.; Su, Q.; Qin, Z. Y.; Chen, S. M. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 2021, 14, 320–327.

    CAS  Article  Google Scholar 

  36. [36]

    Su, Q.; Sun, Y. Z.; Zhang, H.; Chen, S. M. Origin of positive aging in quantum-dot light-emitting diodes. Adv. Sci. 2018, 5, 1800549.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61775090) and the Guangdong Natural Science Funds for Distinguished Young Scholars (No. 2016A030306017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuming Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Qin, Z., Su, S. et al. The influence of H2O and O2 on the optoelectronic properties of inverted quantum-dot light-emitting diodes. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3354-7

Download citation

Keywords

  • quantum-dot
  • light-emitting diodes
  • ZnMgO
  • oxygen
  • water