Single entity electrochemistry and the electron transfer kinetics of hydrazine oxidation

Abstract

The mechanism and kinetics of the electro-catalytic oxidation of hydrazine by graphene oxide platelets randomly decorated with palladium nanoparticles are deduced using single particle impact electrochemical measurements in buffered aqueous solutions across the pH range 2–11. Both hydrazine, N2H4, and protonated hydrazine N2H5+ are shown to be electroactive following Butler-Volmer kinetics, of which the relative contribution is strongly pH-dependent. The negligible interconversion between N2H4 and N2H5+ due to the sufficiently short timescale of the impact voltammetry, allows the analysis of the two electron transfer rates from impact signals thus reflecting the composition of the bulk solution at the pH in question. In this way the rate determining step in the oxidation of each specie is deduced to be a one electron step in which no protons are released and so likely corresponds to the initial formation of a very short-lived radical cation either in solution or adsorbed on the platelet. Overall the work establishes a generic method for the elucidation of the rate determining electron transfer in a multistep process free from any complexity imposed by preceding or following chemical reactions which occur on the timescale of conventional voltammetry.

References

  1. [1]

    Chen, C. H.; Jacobse, L.; McKelvey, K.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R. Voltammetric scanning electrochemical cell microscopy: Dynamic imaging of hydrazine electro-oxidation on platinum electrodes. Anal. Chem. 2015, 87, 5782–5789.

    CAS  Article  Google Scholar 

  2. [2]

    Harraz, F. A.; Ismail, A. A.; Al-Sayari, S. A.; Al-Hajry, A.; Al-Assiri, M. S. Highly sensitive amperometric hydrazine sensor based on novel α-Fe2O3/crosslinked polyaniline nanocomposite modified glassy carbon electrode. Sens. Actuators B Chem. 2016, 234, 573–582.

    CAS  Article  Google Scholar 

  3. [3]

    Wang, T. Z.; Wang, Q.; Wang, Y. C.; Da, Y. L.; Zhou, W.; Shao, Y.; Li, D. B.; Zhan, S. H.; Yuan, J. Y.; Wang, H. Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells. Angew. Chem., Int. Ed. 2019, 131, 13600–13605.

    Article  Google Scholar 

  4. [4]

    Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366.

    CAS  Article  Google Scholar 

  5. [5]

    Sakamoto, T.; Asazawa, K.; Martinez, U.; Halevi, B.; Suzuki, T.; Arai, S.; Matsumura, D.; Nishihata, Y.; Atanassov, P.; Tanaka, H. Electrooxidation of hydrazine hydrate using Ni-La catalyst for anion exchange membrane fuel cells. J. Power Sources 2013, 234, 252–259.

    CAS  Article  Google Scholar 

  6. [6]

    Lindley, B. M.; Appel, A. M.; Krogh-Jespersen, K.; Mayer, J. M.; Miller, A. J. M. Evaluating the thermodynamics of electrocatalytic N2 reduction in acetonitrile. ACS Energy Lett. 2016, 1, 698–704.

    CAS  Article  Google Scholar 

  7. [7]

    Lide, D. R. CRC Handbook of Chemistry and Physics, 85th ed.; CRC Press: Boca Raton, FL, USA, 2004.

    Google Scholar 

  8. [8]

    Hall, Jr. H. K. Correlation of the base strengths of amines. J. Am. Chem. Soc. 1957, 79, 5441–5444.

    CAS  Article  Google Scholar 

  9. [9]

    Karp, S.; Meites, L. The voltammetric characteristics and mechanism of electroöxidation of hydrazine. J. Am. Chem. Soc. 1962, 84, 906–912.

    CAS  Article  Google Scholar 

  10. [10]

    Álvarez-Ruiz, B.; Gómez, R.; Orts, J. M.; Feliu, J. M. Role of the metal and surface structure in the electro-oxidation of hydrazine in acidic media. J. Electrochem. Soc. 2002, 149, D35–D45.

  11. [11]

    Burke, L. D.; Casey, J. K. The electrocatalytic behaviour of palladium in acid and base. J. Appl. Electrochem. 1993, 23, 573–582.

    CAS  Article  Google Scholar 

  12. [12]

    Miao, R. Y.; Chen, L. F.; Compton, R. G. Electro-oxidation of hydrazine shows marcusian electron transfer kinetics. Sci. China Chem. 2021, 64, 322–329.

    CAS  Article  Google Scholar 

  13. [13]

    Wang, Y.; Laborda, E.; Tschulik, K.; Damm, C.; Molina, A.; Compton, R. G. Strong negative nanocatalysis: Oxygen reduction and hydrogen evolution at very small (2 nm) gold nanoparticles. Nanoscale 2014, 6, 11024–11030.

    CAS  Article  Google Scholar 

  14. [14]

    Wang, Y.; Ward, K. R.; Laborda, E.; Salter, C.; Crossley, A.; Jacobs, R. M. J.; Compton, R. G. A joint experimental and computational search for authentic nano-electrocatalytic effects: Electrooxidation of nitrite and L-ascorbate on gold nanoparticle-modified glassy carbon electrodes. Small 2013, 9, 478–486.

    CAS  Article  Google Scholar 

  15. [15]

    Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436–1439.

    CAS  Article  Google Scholar 

  16. [16]

    Kätelhön, E.; Chen, L. F.; Compton, R. G. Nanoparticle electrocatalysis: Unscrambling illusory inhibition and catalysis. Appl. Mater. Today 2019, 15, 139–144.

    Article  Google Scholar 

  17. [17]

    Chen, L. F.; Kätelhön, E.; Compton, R. G. Particle-modified electrodes: General mass transport theory, experimental validation, and the role of electrostatics. Appl. Mater. Today 2020, 18, 100480.

    Article  Google Scholar 

  18. [18]

    Streeter, I.; Wildgoose, G. G.; Shao, L. D.; Compton, R. G. Cyclic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes. Sens. Actuators B Chem. 2008, 133, 462–466.

    CAS  Article  Google Scholar 

  19. [19]

    Henstridge, M. C.; Dickinson, E. J. F.; Aslanoglu, M.; Batchelor-McAuley, C.; Compton, R. G. Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films: The oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes. Sens. Actuators B Chem. 2010, 145, 417–427.

    CAS  Article  Google Scholar 

  20. [20]

    Sims, M. J.; Rees, N. V.; Dickinson, E. J. F.; Compton, R. G. Effects of thin-layer diffusion in the electrochemical detection of nicotine on basal plane pyrolytic graphite (BPPG) electrodes modified with layers of multi-walled carbon nanotubes (MWCNT-BPPG). Sens. Actuators B Chem. 2010, 144, 153–158.

    CAS  Article  Google Scholar 

  21. [21]

    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    CAS  Article  Google Scholar 

  22. [22]

    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

    CAS  Article  Google Scholar 

  23. [23]

    Eda, G.; Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 2010, 22, 2392–2415.

    CAS  Article  Google Scholar 

  24. [24]

    Stevenson, K. J.; Tschulik, K. A materials driven approach for understanding single entity nano impact electrochemistry. Curr. Opin. Electrochem. 2017, 6, 38–45.

    CAS  Article  Google Scholar 

  25. [25]

    Xu, W.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Single particle electrochemistry of collision. Small 2019, 15, 1804908.

    Article  CAS  Google Scholar 

  26. [26]

    Sokolov, S. V.; Eloul, S.; Kätelhön, E.; Batchelor-McAuley, C.; Compton, R. G. Electrode-particle impacts: A users guide. Phys. Chem. Chem. Phys. 2017, 19, 28–43.

    CAS  Article  Google Scholar 

  27. [27]

    Li, X. T.; Batchelor-McAuley, C.; Whitby, S. A. I.; Tschulik, K.; Shao, L. D.; Compton, R. G. Single nanoparticle voltammetry: Contact modulation of the mediated current. Angew. Chem., Int. Ed. 2016, 55, 4296–4299.

    CAS  Article  Google Scholar 

  28. [28]

    Hummers, Jr. W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    CAS  Article  Google Scholar 

  29. [29]

    Ellison, J.; Batchelor-McAuley, C.; Tschulik, K.; Compton, R. G. The use of cylindrical micro-wire electrodes for nano-impact experiments; facilitating the sub-picomolar detection of single nanoparticles. Sens. Actuators B Chem. 2014, 200, 47–52.

    CAS  Article  Google Scholar 

  30. [30]

    Kätelhön, E.; Tanner, E. E. L.; Batchelor-McAuley, C.; Compton, R. G. Destructive nano-impacts: What information can be extracted from spike shapes? Electrochim. Acta 2016, 199, 297–304.

    Article  CAS  Google Scholar 

  31. [31]

    Miao, R. Y.; Chen, L. F.; Shao, L. D.; Zhang, B. S.; Compton, R. G. Electron transfer to decorated graphene oxide particles. Angew. Chem., Int. Ed. 2019, 58, 12549–12552.

    CAS  Article  Google Scholar 

  32. [32]

    Xie, Y. N.; Wang, J.; Huang, X.; Luo, B. W.; Yu, W. Z.; Shao, L. D. Palladium nanoparticles supported on graphene sheets incorporating boron oxides (BxOy) for enhanced formic acid oxidation. Electrochem. Commun. 2017, 74, 48–52.

    CAS  Article  Google Scholar 

  33. [33]

    Krittayavathananon, A.; Srimuk, P.; Luanwuthi, S.; Sawangphruk, M. Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: Effects of particle size and hydrodynamic diffusion. Anal. Chem. 2014, 86, 12272–12278.

    CAS  Article  Google Scholar 

  34. [34]

    Ejaz, A.; Ahmed, M. S.; Jeon, S. Highly efficient benzylamine functionalized graphene supported palladium for electrocatalytic hydrazine determination. Sens. Actuators B Chem. 2015, 221, 1256–1263.

    CAS  Article  Google Scholar 

  35. [35]

    Chinchilla, R.; Nájera, C. Chemicals from alkynes with palladium catalysts. Chem. Rev. 2014, 114, 1783–1826.

    CAS  Article  Google Scholar 

  36. [36]

    Serov, A.; Kwak, C. Direct hydrazine fuel cells: A review. Appl. Catal. B Environ. 2010, 98, 1–9.

    CAS  Article  Google Scholar 

  37. [37]

    Zhang, J. H.; Zhou, Y. G. Nano-impact electrochemistry: Analysis of single bioentities. TrAC Trends Anal. Chem. 2020, 123, 115768.

  38. [38]

    Cheng, W.; Compton, R. G. Electrochemical detection of nanoparticles by “nano-impact” methods. TrAC Trends Anal. Chem. 2014, 58, 79–89.

    CAS  Article  Google Scholar 

  39. [39]

    Hodson, H.; Li, X. T.; Batchelor-McAuley, C.; Shao, L. D.; Compton, R. G. Single nanotube voltammetry: Current fluctuations are due to physical motion of the nanotube. J. Phys. Chem. C 2016, 120, 6281–6286.

    CAS  Article  Google Scholar 

  40. [40]

    Albery, J. Electrode Kinetics; Clarendon Press: Oxford, 1975.

    Google Scholar 

  41. [41]

    Compton, R. G.; Banks, C. E. Understanding Voltammetry, 3rd ed.; World Scientific: Singapore, 2018.

    Google Scholar 

  42. [42]

    Guidelli, R.; Compton, R. G.; Feliu, J. M.; Gileadi, E.; Lipkowski, J.; Schmickler, W.; Trasatti, S. Defining the transfer coefficient in electrochemistry: An assessment (IUPAC technical report). Pure Appl. Chem. 2014, 86, 245–258.

    CAS  Article  Google Scholar 

  43. [43]

    Ram, M. S.; Hupp, J. T. Linear free energy relations for multielectron transfer kinetics: A brief look at the Broensted/Tafel analogy. J. Phys. Chem. 1990, 94, 2378–2380.

    CAS  Article  Google Scholar 

  44. [44]

    Cutress, I. J.; Compton, R. G. Theory of square, rectangular, and microband electrodes through explicit GPU simulation. J. Electroanal. Chem. 2010, 645, 159–166.

    CAS  Article  Google Scholar 

  45. [45]

    Aoki, K. Theory of ultramicroelectrodes. Electroanalysis 1993, 5, 627–639.

    CAS  Article  Google Scholar 

  46. [46]

    Rudolph, M.; Reddy, D. P.; Feldberg, S. W. A simulator for cyclic voltammetric responses. Anal. Chem. 1994, 66, 589A–600A.

    CAS  Article  Google Scholar 

  47. [47]

    Szabo, A.; Cope, D. K.; Tallman, D. E.; Kovach, P. M.; Wightman, R. M. Chronoamperometric current at hemicylinder and band microelectrodes: Theory and experiment. J. Electroanal. Chem. Interfacial Electrochem. 1987, 217, 417–423.

    CAS  Article  Google Scholar 

  48. [48]

    Kovach, P. M.; Caudill, W. L.; Peters, D. G.; Wightman, R. M. Faradaic electrochemistry at microcylinder, band, and tubular band electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1985, 185, 285–295.

    CAS  Article  Google Scholar 

  49. [49]

    Forster, R. J. Microelectrodes: New dimensions in electrochemistry. Chem. Soc. Rev. 1994, 23, 289–297.

    CAS  Article  Google Scholar 

  50. [50]

    Chidsey, C. E. D. Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science 1991, 251, 919–922.

    CAS  Article  Google Scholar 

  51. [51]

    Hush, N. S. Electron transfer in retrospect and prospect 1: Adiabatic electrode processes. J. Electroanal. Chem. 1999, 470, 170–195.

    CAS  Article  Google Scholar 

Download references

Funding

Open access funding provided by University of Oxford.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard G. Compton.

Electronic Supplementary Material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miao, R., Shao, L. & Compton, R.G. Single entity electrochemistry and the electron transfer kinetics of hydrazine oxidation. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3353-8

Download citation

Keywords

  • single entity electrochemistry
  • hydrazine electro-oxidation
  • electro-catalysis
  • graphene oxide
  • palladium nanoparticles