Skip to main content
Log in

High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt(4,4′-(N-(4-butylphenyl))] (TFB), one of the most popular and widely used hole-transport layer (HTL) materials, has been successfully applied in high performance spin-coated quantum dots-based light-emitting diodes (QLEDs) due to its suitable energy level and high mobility. However, there are still many challenging issues in inkjet-printed QLED devices when using TFB as HTL. TFB normally suffers from the interlayer mixing and erosion, and low surface energy against the good film formation. Here, a novel environment-friendly binary solvent system was established for formulating quantum dot (QD) inks, which is based on mixing halogen-free alkane solvents of decalin and n-tridecane. The optimum volume ratio for the mixture of decalin and n-tridecane was found to be 7:3, at which a stable ink jetting flow and coffee-ring free QD films could be formed. To research the influence of substrate surface on the formation of inkjet-printed QD films, TFB was annealed at different temperatures, and the optimum annealing temperature was found to enable high quality inkjet-printed QD film. Inkjet-printed red QLED was ultimately manufactured. A maximum 18.3% of external quantum efficiency (EQE) was achieved, reaching 93% of the spin-coated QLED, which is the best reported high efficiency inkjet-printed red QLEDs to date. In addition, the inkjet-printed QLED achieved similar T75 operational lifetime (27 h) as compared to the spin-coated reference QLED (28 h) at 2,000 cd·m−2. This work demonstrated that the novel orthogonal halogen-free alkane co-solvents can improve the interfacial contact and facilitate high-performance inkjet printing QLEDs with high EQE and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

    Article  CAS  Google Scholar 

  2. Sun, Q. J.; Wang, Y. A.; Li, L. S.; Wang, D. Y.; Zhu, T.; Xu, J.; Yang, C. H.; Li, Y. F. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 2007, 1, 717–722.

    Article  CAS  Google Scholar 

  3. Bae, W. K.; Kwak, J.; Lim, J.; Lee, D.; Nam, M. K.; Char, K.; Lee, C.; Lee, S. Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. Nano Lett. 2010, 10, 2368–2373.

    Article  CAS  Google Scholar 

  4. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    Article  CAS  Google Scholar 

  5. Bae, W. K.; Lim, J.; Lee, D.; Park, M.; Lee, H.; Kwak, J.; Char, K.; Lee, C.; Lee, S. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Adv. Mater. 2014, 26, 6387–6393.

    Article  CAS  Google Scholar 

  6. Chen, Z. N.; Su, Q.; Qin, Z. Y.; Chen, S. M. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 2021, 14, 320–327.

    Article  CAS  Google Scholar 

  7. Kim, S.; Kim, J.; Kim, D.; Kim, B.; Chae, H.; Yi, H.; Hwang, B. High-performance transparent quantum dot light-emitting diode with patchable transparent electrodes. ACS Appl. Mater. Interfaces 2019, 11, 26333–26338.

    Article  CAS  Google Scholar 

  8. Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

    Article  Google Scholar 

  9. Cao, F.; Zhao, D. W.; Shen, P. Y.; Wu, J. L.; Wang, H. R.; Wu, Q. Q.; Wang, F. J.; Yang, X. Y. High-efficiency, solution-processed white quantum dot light-emitting diodes with serially stacked red/green/blue units. Adv. Opt. Mater. 2018, 6, 1800652.

    Article  Google Scholar 

  10. Shen, P. Y.; Cao, F.; Wang, H. R.; Wei, B.; Wang, F. J.; Sun, X. W.; Yang, X. Y. Solution-processed double-junction quantum-dot light-emitting diodes with an EQE of over 40%. ACS Appl. Mater. Interfaces 2019, 11, 1065–1070.

    Article  CAS  Google Scholar 

  11. Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.

    Article  CAS  Google Scholar 

  12. Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. J.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

    Article  CAS  Google Scholar 

  13. Cho, K. S.; Lee, E. K.; Joo, W. J.; Jang, E.; Kim, T. H.; Lee, S. J.; Kwon, S. J.; Han, J. Y.; Kim, B. K.; Choi, B. L. et al. Highperformance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 2009, 3, 341–345.

    Article  CAS  Google Scholar 

  14. Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182.

    Article  CAS  Google Scholar 

  15. Zou, Y. T.; Ban, M. Y.; Cui, W.; Huang, Q.; Wu, C.; Liu, J. W.; Wu, H. H.; Song, T.; Sun, B. Q. A general solvent selection strategy for solution processed quantum dots targeting high performance light-emitting diode. Adv. Funct. Mater. 2017, 27, 1603325.

    Article  Google Scholar 

  16. Oh, N.; Kim, B. H.; Cho, S. Y.; Nam, S.; Rogers, S. P.; Jiang, Y. R.; Flanagan, J. C.; Zhai, Y.; Kim, J. H.; Lee, J. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 2017, 355, 616–619.

    Article  CAS  Google Scholar 

  17. Lin, Q. L.; Wang, L.; Li, Z. H.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, L. S. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process. ACS Photonics 2018, 5, 939–946.

    Article  CAS  Google Scholar 

  18. Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

    Article  Google Scholar 

  19. Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

    Article  CAS  Google Scholar 

  20. Mei, W. H.; Zhang, Z. Q.; Zhang, A. D.; Li, D.; Zhang, X. Y.; Wang, H. W.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 2020, 13, 2485–2491.

    Article  CAS  Google Scholar 

  21. Kim, B. H.; Onses, M. S.; Lim, J. B.; Nam, S.; Oh, N.; Kim, H.; Yu, K. J.; Lee, J. W.; Kim, J. H.; Kang, S. K. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 2015, 15, 969–973.

    Article  CAS  Google Scholar 

  22. Jiang, C. B.; Zhong, Z. M.; Liu, B. Q.; He, Z. W.; Zou, J. H.; Wang, L.; Wang, J.; Peng, J. B.; Cao, Y. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Appl. Mater. Interfaces 2016, 8, 26162–26168.

    Article  CAS  Google Scholar 

  23. Liu, Y.; Li, F. S.; Xu, Z. W.; Zheng, C. X.; Guo, T. L; Xie, X. W; Qian, L.; Fu, D.; Yan, X. L. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique. ACS Appl. Mater. Interfaces 2017, 9, 25506–25512.

    Article  CAS  Google Scholar 

  24. Zhou, L.; Yang, L.; Yu, M. J.; Jiang, Y.; Liu, C. F.; Lai, W. Y.; Huang, W. Inkjet-printed small-molecule organic light-emitting diodes: Halogen-free inks, printing optimization, and large-area patterning. ACS Appl. Mater. Interfaces 2017, 9, 40533–40540.

    Article  CAS  Google Scholar 

  25. Xie, L. M.; Xiong, X. Y.; Chang, Q. W.; Chen, X. L; Wei, C. T.; Li, X.; Zhang, M.; Su, W. M.; Cui, Z. Inkjet-printed high-efficiency multilayer QLEDs based on a novel crosslinkable small-molecule hole transport material. Small 2019, 15, 1900111.

    Article  Google Scholar 

  26. Xiong, X. Y.; Wei, C. T; Xie, L. M.; Chen, M.; Tang, P. Y.; Shen, W.; Deng, Z. T.; Li, X.; Duan, Y. J.; Su, W. M. et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface. Org. Electron. 2019, 73, 247–254.

    Article  CAS  Google Scholar 

  27. Xiang, C. Y.; Wu, L. J.; Lu, Z. Z; Li, M. L; Wen, Y. W.; Yang, Y. X.; Liu, W. Y.; Zhang, T.; Cao, W. R.; Tsang, S. W. et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 2020, 11, 1646.

    Article  Google Scholar 

  28. Yang, P. H.; Zhang, L.; Kang, D. J.; Strahl, R.; Kraus, T. Highresolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv. Opt. Mater. 2020, 8, 1901429.

    Article  CAS  Google Scholar 

  29. Li, D. Y.; Wang, J. J.; Li, M. Z.; Xie, G. C.; Guo, B.; Mu, L.; Li, H. Y.; Wang, J.; Yip, H. L.; Peng, J. B. Inkjet printing matrix perovskite quantum dot light-emitting devices. Adv. Mater. Technol. 2020, 5, 2000099.

    Article  CAS  Google Scholar 

  30. Gaworski, C. L.; Haun, C. C.; MacEwen, J. D.; Vernot, E. H.; Bruner, R. H.; Amster, R. L.; Cowan, M. J. Jr. A 90-day vapor inhalation toxicity study of decalin. Fundam. Appl. Toxicol. 1985, 5, 785–793.

    Article  CAS  Google Scholar 

  31. Jang, D.; Kim, D.; Moon, J. Influence of fluid physical properties on ink-jet printability. Langmuir 2009, 25, 2629–2635.

    Article  CAS  Google Scholar 

  32. Hu, H.; Larson, R. G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 2006, 110, 7090–7094.

    Article  CAS  Google Scholar 

  33. Lim, J. A.; Lee, W. H.; Lee, H. S.; Lee, J. H.; Park, Y. D.; Cho, K. Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 2008, 18, 229–234.

    Article  CAS  Google Scholar 

  34. Ding, Z. C.; Xing, R. B.; Fu, Q.; Ma, D. G.; Han, Y. C. Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Org. Electron. 2011, 12, 703–709.

    Article  CAS  Google Scholar 

  35. Liu, H. M.; Xu, W.; Tan, W. Y.; Zhu, X. H.; Wang, J.; Peng, J. B.; Cao, Y. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. J. Colloid Interface Sci. 2016, 465, 106–111.

    Article  CAS  Google Scholar 

  36. Ma, F.; Xu, K. W. Using dangling bond density to characterize the surface energy of nanomaterials. Surf. Interface Anal. 2007, 39, 611–614.

    Article  CAS  Google Scholar 

  37. Yang, Z. Q.; Huck, W. T. S.; Clarke, S. M.; Tajbakhsh, A. R.; Terentjev, E. M. Shape-memory nanoparticles from inherently non-spherical polymer colloids. Nat. Mater. 2005, 4, 486–490.

    Article  CAS  Google Scholar 

  38. Han, Y. J.; An, K.; Kang, K. T.; Ju, B. K.; Cho, K. H. Optical and electrical analysis of annealing temperature of high-molecular weight hole transport layer for quantum-dot light-emitting diodes. Sci. Rep. 2019, 9, 10385.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFB0401600), the National Natural Science Foundation of China (No. U1605244) and China Postdoctoral Science Foundation (No. 2020M681726).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Su.

Electronic Supplementary Material

12274_2021_3352_MOESM1_ESM.pdf

High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Xie, L., Wei, C. et al. High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system. Nano Res. 14, 4125–4131 (2021). https://doi.org/10.1007/s12274-021-3352-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3352-9

Keywords

Navigation