Controlled growth of transition metal dichalcogenide via thermogravimetric prediction of precursors vapor concentration

Abstract

Transition metal dichalcogenide (TMD) alloys and heterostructures are attracting increasing attention thanks to their unique electronic, optical, and interfacial properties. However, the growth fundamental of TMD alloys and heterostructures during one-step growth is still beyond understanding. Here, thermogravimetric (TG/DTG) technology is introduced to predict the evolution of the precursor (MoO3 and WO3) concentration in the vapor during growth. We establish the correlation between precursor concentration and the corresponding growth behavior. TG/DTG predication suggests that tuning precursor temperature and powder ratio can alter their concentration in the vapor, well explaining the formation of MoxW1−xSe2 alloy or MoSe2-WSe2 heterostructure at different growth conditions. Based on the TG/DTG analysis, we further design and grow a complex MoSe2-MoxW1−xSe2-WSe2 heterostructure and MoxW1−xS2 monolayer alloys, confirming the validity of TG/DTG prediction in TMD crystal synthesis. Thus, employing TG/DTG to predict the synthesis of two-dimensional materials is of importance to understand the TMD growth behavior and provide guidance to the desired TMD heterostructure formation for future photoelectric devices.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130.

    CAS  Article  Google Scholar 

  2. [2]

    Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

    CAS  Article  Google Scholar 

  3. [3]

    Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.

    CAS  Article  Google Scholar 

  4. [4]

    Jiang, J.; Hu, W. N.; Xie, D. D.; Yang, J. L.; He, J.; Gao, Y. L.; Wan, Q. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale 2019, 11, 1360–1369.

    CAS  Article  Google Scholar 

  5. [5]

    Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.

    CAS  Article  Google Scholar 

  6. [6]

    Zheng, X. M.; Zhang, X. A.; Wei, Y. H.; Liu, J. X.; Yang, H.; Zhang, X. Z.; Wang, S. T.; Xie, H. P.; Deng, C. Y.; Gao, Y. L. et al. Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment. Nano Res. 2020, 13, 952–958.

    CAS  Article  Google Scholar 

  7. [7]

    Zheng, B. Y.; Ma, C.; Li, D.; Lan, J. Y.; Zhang, Z.; Sun, X. X.; Zheng, W. H.; Yang, T. F.; Zhu, C. G.; Ouyang, G. et al. Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 2018, 140, 11193–11197.

    CAS  Article  Google Scholar 

  8. [8]

    Frisenda, R.; Molina-Mendoza, A. J.; Mueller, T.; Castellanos-Gomez, A.; van der Zant, H. S. J. Atomically thin p-n junctions based on two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3339–3358.

    CAS  Article  Google Scholar 

  9. [9]

    Zhou, J. D.; Tang, B. J.; Lin, J. H.; Lv, D. H.; Shi, J.; Sun, L. F.; Zeng, Q. S.; Niu, L.; Liu, F. C.; Wang, X. W. et al. Morphology engineering in monolayer MoS2-WS2 lateral heterostructures. Adv. Funct. Mater. 2018, 28, 1801568.

    Article  Google Scholar 

  10. [10]

    Li, X. F.; Lin, M. W.; Basile, L.; Hus, S. M.; Puretzky, A. A.; Lee, J.; Kuo, Y. C.; Chang, L. Y.; Wang, K.; Idrobo, J. C. et al. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 2016, 28, 8240–8247.

    CAS  Article  Google Scholar 

  11. [11]

    Liu, D. Y.; Hong, J. H.; Li, X. B.; Zhou, X.; Jin, B.; Cui, Q. N.; Chen, J. P.; Feng, Q. L.; Xu, C. X.; Zhai, T. Y. et al. Synthesis of 2H-1T’ WS2-ReS2 heterophase structures with atomically sharp interface via hydrogen-triggered one-pot growth. Adv. Funct. Mater. 2020, 30, 1910169.

    CAS  Article  Google Scholar 

  12. [12]

    Yang, R. L.; Liu, L. X.; Feng, S. H.; Liu, Y. J.; Li, S. L.; Zhai, K.; Xiang, J. Y.; Mu, C. P.; Nie, A. M.; Wen, F. S. et al. One-step growth of spatially graded Mo1−xWxS2 Monolayers with a wide span in composition (from x = 0 to 1) at a large scale. ACS Appl. Mater. Interfaces 2019, 11, 20979–20986.

    CAS  Article  Google Scholar 

  13. [13]

    Li, F.; Feng, Y. X.; Li, Z. W.; Ma, C.; Qu, J. Y.; Wu, X. P.; Li, D.; Zhang, X. H.; Yang, T. F.; He, Y. Q. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 2019, 31, 1901351.

    Article  Google Scholar 

  14. [14]

    Sahoo, P. K.; Memaran, S.; Xin, Y.; Balicas, L.; Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 2018, 553, 63–67.

    CAS  Article  Google Scholar 

  15. [15]

    Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

    CAS  Article  Google Scholar 

  16. [16]

    Lee, J.; Pak, S.; Lee, Y. W.; Park, Y.; Jang, A. R.; Hong, J.; Cho, Y.; Hou, B.; Lee, S.; Jeong, H. Y. et al. Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano 2019, 13, 13047–13055.

    CAS  Article  Google Scholar 

  17. [17]

    Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135–6141.

    CAS  Article  Google Scholar 

  18. [18]

    Bayer, B. C.; Kaindl, R.; Monazam, M. R. A.; Susi, T.; Kotakoski, J.; Gupta, T.; Eder, D.; Waldhauser, W.; Meyer, J. C. Atomic-scale in situ observations of crystallization and restructuring processes in two-dimensional MoS2 films. ACS Nano 2018, 12, 8758–8769.

    CAS  Article  Google Scholar 

  19. [19]

    Fei, L. F.; Lei, S. J.; Zhang, W. B.; Lu, W.; Lin, Z. Y.; Lam, C. H.; Chai, Y.; Wang, Y. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat. Commun. 2016, 7, 12206.

    CAS  Article  Google Scholar 

  20. [20]

    Rasouli, H. R.; Mehmood, N.; Çakıroğlu, O.; Kasirga, T. S. Real time optical observation and control of atomically thin transition metal dichalcogenide synthesis. Nanoscale 2019, 11, 7317–7323.

    CAS  Article  Google Scholar 

  21. [21]

    Liu, B. L.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y. Q.; Zhou, C. W. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 2015, 9, 6119–6127.

    CAS  Article  Google Scholar 

  22. [22]

    Pondick, J. V.; Woods, J. M.; Xing, J.; Zhou, Y.; Cha, J. J. Stepwise sulfurization from MoO3 to MoS2 via chemical vapor deposition. ACS Appl. Nano Mater. 2018, 1, 5655–5661.

    CAS  Article  Google Scholar 

  23. [23]

    Yang, M.; Cheng, X. R.; Li, Y. Y.; Ren, Y. F.; Liu, M.; Qi, Z. M. Anharmonicity of monolayer MoS2, MoSe2, and WSe2: A Raman study under high pressure and elevated temperature. Appl. Phys. Lett. 2017, 110, 093108.

    Article  Google Scholar 

  24. [24]

    Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.

    CAS  Article  Google Scholar 

  25. [25]

    Apte, A.; Kochat, V.; Rajak, P.; Krishnamoorthy, A.; Manimunda, P.; Hachtel, J. A.; Idrobo, J. C.; Amanulla, S. A. S.; Vashishta, P.; Nakano, A. et al. Structural phase transformation in strained monolayer MoWSe2 alloy. ACS Nano 2018, 12, 3468–3476.

    CAS  Article  Google Scholar 

  26. [26]

    Chang, Y. H.; Zhang, W. J.; Zhu, Y.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582–8590.

    CAS  Article  Google Scholar 

  27. [27]

    Fang, L.; Yuan, X. M.; Liu, K. W.; Li, L.; Zhou, P.; Ma, W.; Huang, H.; He, J.; Tao, S. H. Direct bilayer growth: A new growth principle for a novel WSe2 homo-junction and bilayer WSe2 growth. Nanoscale 2020, 12, 3715–3722.

    CAS  Article  Google Scholar 

  28. [28]

    Wilken, T. R.; Morcom, W. R.; Wert, C. A.; Woodhouse, J. B. Reduction of tungsten oxide to tungsten metal. Metall. Trans. B, 1976, 7, 589–597.

    Article  Google Scholar 

  29. [29]

    Hougen, J. O.; Reeves, R. R.; Mannella, G. G. Reduction of tungsten oxides with hydrogen. Ind. Eng. Chem. 1956, 48, 318–320.

    CAS  Article  Google Scholar 

  30. [30]

    Fang, L.; Chen, H. T.; Yuan, X. M.; Huang, H.; Chen, G.; Li, L.; Ding, J. N.; He, J.; Tao, S. H. Quick optical identification of the defect formation in monolayer WSe2 for growth optimization. Nanoscale Res. Lett. 2019, 14, 274.

    Article  Google Scholar 

  31. [31]

    Ullah, F.; Sim, Y.; Le, C. T.; Seong, M. J.; Jang, J. I.; Rhim, S. H.; Khac, B. C. T.; Chung, K. H.; Park, K.; Lee, Y. et al. Growth and simultaneous valleys manipulation of two-dimensional MoSe2-WSe2 lateral heterostructure. ACS Nano 2017, 11, 8822–8829.

    CAS  Article  Google Scholar 

  32. [32]

    Zhang, M.; Wu, J. X.; Zhu, Y. M.; Dumcenco, D. O.; Hong, J. H.; Mao, N. N.; Deng, S. B.; Chen, Y. F.; Yang, Y. L.; Jin, C. H. et al. Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano 2014, 8, 7130–7137.

    CAS  Article  Google Scholar 

  33. [33]

    Tongay, S.; Narang, D. S.; Kang, J.; Fan, W.; Ko, C. H.; Luce, A. V.; Wang, K. X.; Suh, J.; Patel, K. D.; Pathak, V. M. et al. Two-dimensional semiconductor alloys: Monolayer Mo1−xWxSe2. Appl. Phys. Lett. 2014, 104, 012101.

    Article  Google Scholar 

  34. [34]

    Zhao, S. D.; Tao, L.; Miao, P.; Wang, X. J.; Liu, Z. G.; Wang, Y.; Li, B. S.; Sui, Y.; Wang, Y. Strong room-temperature emission from defect states in CVD-grown WSe2 nanosheets. Nano Res. 2018, 11, 3922–3930.

    CAS  Article  Google Scholar 

  35. [35]

    Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971.

    CAS  Article  Google Scholar 

  36. [36]

    Lan, C. Y.; Li, C.; Yin, Y.; Liu, Y. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale 2015, 7, 5974–5980.

    CAS  Article  Google Scholar 

  37. [37]

    Wang, Z. Q.; Liu, P.; Ito, Y.; Ning, S. C.; Tan, Y. W.; Fujita, T.; Hirata, A.; Chen, M. W. Chemical vapor deposition of monolayer Mo1−xWxS2 crystals with tunable band gaps. Sci. Rep. 2016, 6, 21536.

    CAS  Article  Google Scholar 

  38. [38]

    Park, J.; Kim, M. S.; Park, B.; Oh, S. H.; Roy, S.; Kim, J.; Choi, W. Composition-tunable synthesis of large-scale Mo1−xWxS2 alloys with enhanced photoluminescence. ACS Nano 2018, 12, 6301–6309.

    CAS  Article  Google Scholar 

  39. [39]

    Zhou, J. D.; Liu, F. C.; Lin, J. H.; Huang, X. W.; Xia, J.; Zhang, B. W.; Zeng, Q. S.; Wang, H.; Zhu, C.; Niu, L. et al. Large-area and high-quality 2D transition metal telluride. Adv. Mater. 2017, 29, 1603471.

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Nos. 51702368, 61974166, and 11674401); the Natural Science Foundation of Hunan Province (Nos. 2018JJ3684 and 2019JJ40358); Innovation-Driven Project of Central South University (No. 2018CX045); and the Mechanism Research Funds for the Central South University (No. 1053320181264) are acknowledged for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Yuan.

Ethics declarations

There are no conflicts to declare.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Tao, S., Tian, Z. et al. Controlled growth of transition metal dichalcogenide via thermogravimetric prediction of precursors vapor concentration. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3347-6

Download citation

Keywords

  • TG/DTG
  • MoxW1−xSe2 alloys
  • MoSe2-WSe2 lateral heterostructures
  • precursor concentration