Graphene transfer methods: A review

Abstract

Graphene is a material with unique properties that can be exploited in electronics, catalysis, energy, and bio-related fields. Although, for maximal utilization of this material, high-quality graphene is required at both the growth process and after transfer of the graphene film to the application-compatible substrate. Chemical vapor deposition (CVD) is an important method for growing high-quality graphene on non-technological substrates (as, metal substrates, e.g., copper foil). Thus, there are also considerable efforts toward the efficient and non-damaging transfer of quality of graphene on to technologically relevant materials and systems. In this review article, a range of graphene current transfer techniques are reviewed from the standpoint of their impact on contamination control and structural integrity preservation of the as-produced graphene. In addition, their scalability, cost- and time-effectiveness are discussed. We summarize with a perspective on the transfer challenges, alternative options and future developments toward graphene technology.

References

  1. [1]

    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    CAS  Article  Google Scholar 

  2. [2]

    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    CAS  Article  Google Scholar 

  3. [3]

    Ferrari, A. C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K. S.; Roche, S.; Boggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810.

    CAS  Google Scholar 

  4. [4]

    Ma, L. P.; Ren, W. C.; Cheng, H. M. Transfer methods of graphene from metal substrates: A review. Small Methods 2019, 3, 1900049.

    Article  CAS  Google Scholar 

  5. [5]

    Chen, Z. L.; Qi, Y.; Chen, X. D.; Zhang, Y. F.; Liu, Z. F. Direct CVD growth of graphene on traditional glass: Methods and mechanisms. Adv. Mater. 2019, 31, e1803639.

    Article  CAS  Google Scholar 

  6. [6]

    Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    CAS  Article  Google Scholar 

  7. [7]

    Deokar, G.; Avila, J.; Razado-Colambo, I.; Codron, J. L.; Boyaval, C.; Galopin, E.; Asensio, M. C.; Vignaud, D. Towards high quality CVD graphene growth and transfer. Carbon 2015, 89, 82–92.

    CAS  Article  Google Scholar 

  8. [8]

    Muñoz, R.; Gómez-Aleixandre, C. Review of CVD synthesis of graphene. Chem. Vap. Depos. 2013, 19, 297–322.

    Article  CAS  Google Scholar 

  9. [9]

    Yang, X. J.; Yan, M. D. Removing contaminants from transferred CVD graphene. Nano Res. 2020, 13, 599–610.

    CAS  Article  Google Scholar 

  10. [10]

    Wang, H. P.; Yu, G. Direct CVD graphene growth on semiconductors and dielectrics for transfer-free device fabrication. Adv. Mater. 2016, 28, 4956–4975.

    CAS  Article  Google Scholar 

  11. [11]

    Comanescu, F.; Istrate, A.; Purica, M. Raman investigation of critical steps in monolayer graphene transfer form copper substrate to oxidized silicon by means of electrochemical delamination. In Proceedings of 2018 International Semiconductor Conference, Sinaia, Roumania, 2018, pp 269–272.

  12. [12]

    Comanescu, F.; Istrate, A.; Purica, M. Assessing by Raman spectroscopy the quality of CVD graphene transferred on oxidized silicon and quartz substrates. Rom. J. Inf. Sci. Tech. 2019, 22, 30–40.

    Google Scholar 

  13. [13]

    Kostogrud, I. A.; Boyko, E. V.; Smovzh, D. V. The main sources of graphene damage at transfer from copper to PET/EVA polymer. Mater. Chem. Phys. 2018, 219, 67–73.

    CAS  Article  Google Scholar 

  14. [14]

    Amiri, M. H.; Heidler, J.; Hasnain, A.; Anwar, S.; Lu, H.; Müllen, K.; Asadi, K. Doping free transfer of graphene using aqueous ammonia flow. RSC Adv. 2020, 10, 1127–1131.

    Article  Google Scholar 

  15. [15]

    Lee, H. C.; Liu, W. W.; Chai, S. P.; Mohamed, A. R.; Aziz, A.; Khe, C. S.; Hidayah, N. M.; Hashim, U. Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 2017, 7, 15644–15693.

    CAS  Article  Google Scholar 

  16. [16]

    Ambrosi, A.; Pumera, M. The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale 2014, 6, 472–476.

    CAS  Article  Google Scholar 

  17. [17]

    Leong, W. S.; Wang, H. Z.; Yeo, J. J.; Martin-Martinez, F. J.; Zubair, A.; Shen, P. C.; Mao, Y. W.; Palacios, T.; Buehler, M. J.; Hong, J. Y. et al. Paraffin-enabled graphene transfer. Nat. Commun. 2019, 10, 867.

    Article  Google Scholar 

  18. [18]

    Chen, Y.; Gong, X. L.; Gai, J. G. Progress and challenges in transfer of large-area graphene films. Adv. Sci. 2016, 3, 1500343.

    Article  CAS  Google Scholar 

  19. [19]

    Kang, S.; Yoon, T.; Kim, S.; Kim, T. S. Role of crack deflection on rate dependent mechanical transfer of multilayer graphene and its application to transparent electrodes. ACS Appl. Nano Mater. 2019, 2, 1980–1985.

    CAS  Article  Google Scholar 

  20. [20]

    Chandrashekar, B. N.; Smitha, A. S.; Wu, Y. C.; Cai, N. D.; Li, Y. L.; Huang, Z. Y.; Wang, W. J.; Shi, R.; Wang, J. W.; Liu, S. Y. et al. A universal stamping method of graphene transfer for conducting flexible and transparent polymers. Sci. Rep. 2019, 9, 3999.

    Article  CAS  Google Scholar 

  21. [21]

    Cai, C. Y.; Jia, F. X.; Li, A. L.; Huang, F.; Xu, Z. H.; Qiu, L. Z.; Chen, Y. Q.; Fei, G. T.; Wang, M. Crackless transfer of large-area graphene films for superior-performance transparent electrodes. Carbon 2016, 98, 457–462.

    CAS  Article  Google Scholar 

  22. [22]

    Ullah, S.; Hasan, M.; Ta, H. Q.; Zhao, L.; Shi, Q. T.; Fu, L.; Choi, J.; Yang, R. Z.; Liu, Z. F.; Rümmeli, M. H. Synthesis of doped porous 3D graphene structures by chemical vapor deposition and its applications. Adv. Funct. Mater. 2019, 29, 1904457.

    CAS  Article  Google Scholar 

  23. [23]

    Wang, X. W.; Sun, G. Z.; Routh, P.; Kim, D. H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098.

    CAS  Article  Google Scholar 

  24. [24]

    Kaur, G.; Kavitha, K.; Lahiri, I. Transfer-free graphene growth on dielectric substrates: A review of the growth mechanism. Crit. Rev. Solid State Mater. Sci. 2019, 44, 157–209.

    CAS  Article  Google Scholar 

  25. [25]

    Lisi, N.; Dikonimos, T.; Buonocore, F.; Pittori, M.; Mazzaro, R.; Rizzoli, R.; Marras, S.; Capasso, A. Contamination-free graphene by chemical vapor deposition in quartz furnaces. Sci. Rep. 2017, 7, 9927.

    Article  CAS  Google Scholar 

  26. [26]

    Tan, H.; Wang, D. G.; Guo, Y. B. Thermal growth of graphene: A review. Coatings 2018, 8, 40.

    Article  CAS  Google Scholar 

  27. [27]

    Chen, M. G.; Haddon, R. C.; Yan, R. X.; Bekyarova, E. Advances in transferring chemical vapour deposition graphene: A review. Mater. Horiz. 2017, 4, 1054–1063.

    CAS  Article  Google Scholar 

  28. [28]

    Ahn, Y.; Kim, H.; Kim, Y. H.; Yi, Y.; Kim, S. I. Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene. Appl. Phys. Lett. 2013, 102, 091602.

    Article  CAS  Google Scholar 

  29. [29]

    Zhao, P.; Kumamoto, A.; Kim, S.; Chen, X.; Hou, B.; Chiashi, S.; Einarsson, E.; Ikuhara, Y.; Maruyama, S. Self-limiting chemical vapor deposition growth of monolayer graphene from ethanol. J. Phys. Chem. C 2013, 117, 10755–10763.

    CAS  Article  Google Scholar 

  30. [30]

    Qu, J. Y.; Li, B. W.; Shen, Y. T.; Huo, S. C.; Xu, Y.; Liu, S. Y.; Song, B. K.; Wang, H.; Hu, C. G.; Feng, W. Evaporable glass-state molecule-assisted transfer of clean and intact graphene onto arbitrary substrates. ACS Appl. Mater. Interfaces 2019, 11, 16272–16279.

    CAS  Article  Google Scholar 

  31. [31]

    Wang, Y.; Zheng, Y.; Xu, X. F.; Dubuisson, E.; Bao, Q. L.; Lu, J.; Loh, K. P. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano 2011, 5, 9927–9933.

    CAS  Article  Google Scholar 

  32. [32]

    Mafra, D. L.; Ming, T.; Kong, J. Facile graphene transfer directly to target substrates with a reusable metal catalyst. Nanoscale 2015, 7, 14807–14812.

    CAS  Article  Google Scholar 

  33. [33]

    Takeya, K.; Ikegami, Y.; Matsumura, K.; Kawase, K.; Uchida, H. Optical evaluation of CYTOP, an amorphous fluoropolymer, in the terahertz frequency across a wide temperature range. Appl. Phys. Express 2019, 12, 042004.

    CAS  Article  Google Scholar 

  34. [34]

    Lee, W. H.; Suk, J. W.; Lee, J.; Hao, Y. F.; Park, J.; Yang, J. W.; Ha, H. W.; Murali, S.; Chou, H.; Akinwande, D. et al. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 2012, 6, 1284–1290.

    CAS  Article  Google Scholar 

  35. [35]

    Suk, J. W.; Lee, W. H.; Lee, J.; Chou, H.; Piner, R. D.; Hao, Y. F.; Akinwande, D.; Ruoff, R. S. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett. 2013, 13, 1462–1467.

    CAS  Article  Google Scholar 

  36. [36]

    Wood, J. D.; Doidge, G. P.; Carrion, E. A.; Koepke, J. C.; Kaitz, J. A.; Datye, I.; Behnam, A.; Hewaparakrama, J.; Aruin, B.; Chen, Y. F. Annealing free, clean graphene transfer using alternative polymer scaffolds. Nanotechnology 2015, 26, 055302.

    Article  CAS  Google Scholar 

  37. [37]

    Chen, M. G.; Stekovic, D.; Li, W. X.; Arkook, B.; Haddon, R. C.; Bekyarova, E. Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons. Nanotechnology 2017, 28, 255701.

    Article  CAS  Google Scholar 

  38. [38]

    Wang, B.; Luo, D.; Li, Z. C.; Kwon, Y.; Wang, M. H.; Goo, M.; Jin, S.; Huang, M.; Shen, Y. T.; Shi, H. F. et al. Camphor-enabled transfer and mechanical testing of centimeter-scale ultrathin films. Adv. Mater. 2018, 30, 1800888.

    Article  CAS  Google Scholar 

  39. [39]

    De Castro, R. K.; Araujo, J. R.; Valaski, R.; Costa, L. O. O.; Archanjo, B. S.; Fragneaud, B.; Cremona, M.; Achete, C. A. New transfer method of CVD-grown graphene using a flexible, transparent and conductive polyaniline-rubber thin film for organic electronic applications. Chem. Eng. J. 2015, 273, 509–518.

    CAS  Article  Google Scholar 

  40. [40]

    Park, H.; Park, I. J.; Jung, D. Y.; Lee, K. J.; Yang, S. Y.; Choi, S. Y. Polymer-free graphene transfer for enhanced reliability of graphene field-effect transistors. 2D Mater. 2016, 3, 021003.

    Article  CAS  Google Scholar 

  41. [41]

    Jang, M.; Trung, T. Q.; Jung, J. H.; Kim, B. Y.; Lee, N. E. Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer. Phys. Chem. Chem. Phys. 2014, 16, 4098–4105.

    CAS  Article  Google Scholar 

  42. [42]

    Zhang, G. H.; Guell, A. G.; Kirkman, P. M.; Lazenby, R. A.; Miller, T. S.; Unwin, P. R. Versatile polymer-free graphene transfer method and applications. ACS Appl. Mater. Interfaces 2016, 8, 8008–8016.

    CAS  Article  Google Scholar 

  43. [43]

    Park, H.; Lim, C.; Lee, C. J.; Kang, J.; Kim, J.; Choi, M.; Park, H. Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer. Nanotechnology 2018, 29, 415303.

    Article  CAS  Google Scholar 

  44. [44]

    Chandrashekar, B. N.; Cai, N.; Liu, L. W. Y.; Smitha, A. S.; Wu, Z. F.; Chen, P. C.; Shi, R.; Wang, W. J.; Wang, J. W.; Tang, C. M. et al. Oil boundary approach for sublimation enabled camphor mediated graphene transfer. J. Colloid Interface Sci. 2019, 546, 11–19.

    CAS  Article  Google Scholar 

  45. [45]

    Qi, P. W.; Huang, Y. N.; Yao, Y. Z.; Li, Q.; Lian, Y. B.; Lin, L.; Wang, X. B.; Gu, Y. D.; Li, L. Q.; Deng, Z. et al. Wax-assisted crack-free transfer of monolayer CVD graphene: Extending from standalone to supported copper substrates. Appl. Surf. Sci. 2019, 493, 81–86.

    CAS  Article  Google Scholar 

  46. [46]

    Shahzad, K.; Jia, K. P.; Zhao, C.; Yan, X. Y.; Yadong, Z.; Usman, M.; Luo, J. An improved rosin transfer process for the reduction of residue particles for graphene. Nanoscale Res. Lett. 2020, 15, 85.

    CAS  Article  Google Scholar 

  47. [47]

    Zhang, X. W.; Xu, C.; Zou, Z. X.; Wu, Z. H.; Yin, S. Q.; Zhang, Z. L.; Liu, J. L.; Xia, Y.; Lin, C. T.; Zhao, P. et al. A scalable polymer-free method for transferring graphene onto arbitrary surfaces. Carbon 2020, 161, 479–485.

    CAS  Article  Google Scholar 

  48. [48]

    Huet, B.; Raskin, J. P.; Snyder, D. W.; Redwing, J. M. Fundamental limitations in transferred CVD graphene caused by Cu catalyst surface morphology. Carbon 2020, 163, 95–104.

    CAS  Article  Google Scholar 

  49. [49]

    Abdalrheem, R.; Yam, F. K.; Ibrahim, A. R.; Beh, K. P.; Ng, Y. Z.; Suhaimi, F. H. A.; Lim, H. S.; Jafri, M. Z.; Oglat, A. A. Comparative studies on the transfer of chemical vapor deposition grown graphene using either electrochemical delamination or chemical etching method. J. Phys. Conf. Ser. 2018, 1083, 012038.

    Article  CAS  Google Scholar 

  50. [50]

    Yang, X. W.; Peng, H. L.; Xie, Q.; Zhou, Y.; Liu, Z. F. Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. J. Electroanal. Chem. 2013, 688, 243–248.

    CAS  Article  Google Scholar 

  51. [51]

    Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

    Article  CAS  Google Scholar 

  52. [52]

    Shi, L. J.; Liu, Y. Q.; Yang, F.; Gao, L.; Sun, J. A symmetrical bi-electrode electrochemical technique for high-efficiency transfer of CVD-grown graphene. Nanotechnology 2014, 25, 145704.

    Article  CAS  Google Scholar 

  53. [53]

    Zhang, D. Y.; Jin, Z.; Shi, J. Y.; Wang, X. Y.; Peng, S. A.; Wang, S. Q. The electrochemical transfer of CVD-graphene using agarose gel as solid electrolyte and mechanical support layer. Chem. Commun. 2015, 57, 2987–2990.

    Article  CAS  Google Scholar 

  54. [54]

    Liu, L. H.; Shang, W. J.; Han, C.; Zhang, Q.; Yao, Y.; Ma, X. Q.; Wang, M. H.; Yu, H. T.; Duan, Y.; Sun, J. et al. Two-in-one method for graphene transfer: Simplified fabrication process for organic light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 7289–7295.

    CAS  Article  Google Scholar 

  55. [55]

    Lu, W. E.; Cheng, S.; Yan, M. J.; Wang, Y. W.; Xia, Y. Selective soluble polymer-assisted electrochemical delamination of chemical vapor deposition graphene. J. Solid State Electrochem. 2019, 23, 943–951.

    CAS  Article  Google Scholar 

  56. [56]

    Verguts, K.; Coroa, J.; Huyghebaert, C.; De Gendt, S.; Brems, S. Graphene delamination using “electrochemical methods”: An ion intercalation effect. Nanoscale 2018, 10, 5515–5521.

    CAS  Article  Google Scholar 

  57. [57]

    Gorantla, S.; Bachmatiuk, A.; Hwang, J.; Alsalman, H. A.; Kwak, J. Y.; Seyller, T.; Eckert, J.; Spencer, M. G.; Rümmeli, M. H. A universal transfer route for graphene. Nanoscale 2014, 6, 889–896.

    CAS  Article  Google Scholar 

  58. [58]

    Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

    CAS  Article  Google Scholar 

  59. [59]

    Moon, J. Y.; Kim, S. I.; Son, S. K.; Kang, S. G.; Lim, J. Y.; Lee, D. K.; Ahn, B.; Whang, D.; Yu, H. K.; Lee, J. H. An eco-friendly, CMOS-compatible transfer process for large-scale CVD-graphene. Adv. Mater. Interfaces 2019, 6, 1900084.

    Article  CAS  Google Scholar 

  60. [60]

    Shivayogimath, A.; Whelan, P. R.; Mackenzie, D. M. A.; Luo, B. R.; Huang, D. P.; Luo, D.; Wang, M. H.; Gammelgaard, L.; Shi, H. F.; Ruoff, R. S. et al. Do-it-yourself transfer of large-area graphene using an office laminator and water. Chem. Mater. 2019, 31, 2328–2336.

    CAS  Article  Google Scholar 

  61. [61]

    Marchena, M.; Wagner, F.; Arliguie, T.; Zhu, B.; Johnson, B.; Fernández, M.; Chen, T. L.; Chang, T.; Lee, R.; Pruneri, V. et al. Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Mater. 2018, 5, 035022.

    Article  CAS  Google Scholar 

  62. [62]

    Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y. F.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924.

    CAS  Article  Google Scholar 

  63. [63]

    Feng, Y.; Chen, K. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications. Nanotechnology 2015, 26, 035302.

    CAS  Article  Google Scholar 

  64. [64]

    Kim, J. W.; Woo, J. Y.; Jo, S.; Oh, J. H.; Hong, W.; Lee, B. C.; Jung, H. J.; Kim, J. H.; Roh, S. C.; Han, C. S. Clean and less defective transfer of monolayer graphene by floatation in hot water. Appl. Surf. Sci. 2020, 508, 145057.

    Article  CAS  Google Scholar 

  65. [65]

    Kim, H. H.; Chung, Y.; Lee, E.; Lee, S. K.; Cho, K. Water-free transfer method for CVD-grown graphene and its application to flexible air-stable graphene transistors. Adv. Mater. 2014, 26, 3213–3217.

    CAS  Article  Google Scholar 

  66. [66]

    Fechine, G. J. M.; Martin-Fernandez, I.; Yiapanis, G.; Bentini, R.; Kulkarni, E. S.; De Oliveira, R. V. B.; Hu, X.; Yarovsky, I.; Neto, A. H. C.; Özyilmaz, B. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon 2015, 83, 224–231.

    CAS  Article  Google Scholar 

  67. [67]

    Kessler, F.; Muñoz, P. A. R.; Phelan, C.; Romani, E. C.; Larrudé, D. R. G.; Júnior, F. L. F.; De Souza, E. A. T.; De Matos, C. J. S.; Fechine, G. J. M. Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization. Appl. Surf. Sci. 2018, 440, 55–60.

    CAS  Article  Google Scholar 

  68. [68]

    Xin, H.; Li, W. A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene. Appl. Phys. Rev. 2018, 5, 031105.

    Article  CAS  Google Scholar 

  69. [69]

    Chandrashekar, B. N.; Deng, B.; Smitha, A. S.; Chen, Y. B.; Tan, C. W.; Zhang, H. X.; Peng, H. L.; Liu, Z. F. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 2015, 27, 5210–5216.

    CAS  Article  Google Scholar 

  70. [70]

    Kotsidi, M.; Gorgolis, G.; Galiotis, C. Roll-to-roll graphene transfer as an effective tool for the protection of artworks. In Abstracts from the 12th Panhellenic Scientific Conference on Chemical Engineering, University of Patras, Athens, Greece, May 29–31, 2019. https://12pesxm.chemeng.ntua.gr/abstracts/AC0234.pdf (accessed Oct 25, 2020).

    Google Scholar 

  71. [71]

    Xin, H.; Zhao, Q. S.; Chen, D. M.; Li, W. Roll-to-roll mechanical peeling for dry transfer of chemical vapor deposition graphene. J. Micro Nano-Manuf. 2018, 6, 031004.

    Article  Google Scholar 

  72. [72]

    Hempel, M.; Lu, A. Y.; Hui, F.; Kpulun, T.; Lanza, M.; Harris, G.; Palacios, T.; Kong, J. Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination. Nanoscale 2018, 10, 5522–5531.

    CAS  Article  Google Scholar 

  73. [73]

    Jang, B.; Kim, C. H.; Choi, S. T.; Kim, K. S.; Kim, K. S.; Lee, H. J.; Cho, S.; Ahn, J. H.; Kim, J. H. Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2D Mater. 2017, 4, 024002.

    Article  CAS  Google Scholar 

  74. [74]

    Ma, L. P.; Dong, S. C.; Chen, M. L.; Ma, W.; Sun, D. M.; Gao, Y.; Ma, T.; Cheng, H. M.; Ren, W. C. UV-epoxy-enabled simultaneous intact transfer and highly efficient doping for roll-to-roll production of high-performance graphene films. ACS Appl. Mater. Interfaces 2018, 10, 40756–40763.

    CAS  Article  Google Scholar 

  75. [75]

    Ballesio, A.; Parmeggiani, M.; Verna, A.; Frascella, F.; Cocuzza, M.; Pirri, C. F.; Marasso, S. L. A novel hot embossing Graphene transfer process for flexible electronics. Microelectron. Eng. 2019, 209, 16–19.

    CAS  Article  Google Scholar 

  76. [76]

    Wang, D. Y.; Huang, I. S.; Ho, P. H.; Li, S. S.; Yeh, Y. C.; Wang, D. W.; Chen, W. L.; Lee, Y. Y.; Chang, Y. M.; Chen, C. C. et al. Clean-lifting transfer of large-area residual-free graphene films. Adv. Mater. 2013, 25, 4521–4526.

    CAS  Article  Google Scholar 

  77. [77]

    Jung, W.; Kim, D.; Lee, M.; Kim, S.; Kim, J. H.; Han, C. S. Ultraconformal contact transfer of monolayer graphene on metal to various substrates. Adv. Mater. 2014, 26, 6394–6400.

    CAS  Article  Google Scholar 

  78. [78]

    Lin, W. H.; Chen, T. H.; Chang, J. K.; Taur, J. I.; Lo, Y. Y.; Lee, W. L.; Chang, C. S.; Su, W. B.; Wu, C. I. A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 2014, 8, 1784–1791.

    CAS  Article  Google Scholar 

  79. [79]

    Quellmalz, A.; Wang, X. J.; Wagner, S.; Lemme, M.; Gylfason, K. B.; Roxhed, N.; Stemme, G.; Niklaus, F. Wafer-scale transfer of graphene by adhesive wafer bonding. In Proceedings of 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems, Seoul, Republic of Korea, 2019; pp 257–259.

  80. [80]

    Bautista-Flores, C.; Sato-Berrú, R. Y.; Mendoza, D. Raman spectroscopy of CVD graphene during transfer process from copper to SiO2/Si substrates. Mater. Res. Express 2018, 6, 015601.

    Article  CAS  Google Scholar 

  81. [81]

    Li, R. H.; Li, Z.; Pambou, E.; Gutfreund, P.; Waigh, T. A.; Webster, J. R. P.; Lu, J. R. Determination of PMMA residues on a chemical-vapor-deposited monolayer of graphene by neutron reflection and atomic force microscopy. Langmuir 2018, 34, 1827–1833.

    CAS  Article  Google Scholar 

  82. [82]

    Son, B. H.; Kim, H. S.; Jeong, H.; Park, J. Y.; Lee, S.; Ahn, Y. H. Electron beam induced removal of PMMA layer used for graphene transfer. Sci. Rep. 2017, 7, 18058.

    CAS  Article  Google Scholar 

  83. [83]

    Jia, Y. H.; Gong, X.; Peng, P.; Wang, Z. D.; Tian, Z. Z.; Ren, L. M.; Fu, Y. Y.; Zhang, H. Toward high carrier mobility and low contact resistance: Laser cleaning of PMMA residues on graphene surfaces. Nano-Micro Lett. 2016, 8, 336–346.

    Article  Google Scholar 

  84. [84]

    Pham, T. T.; Do, Q. H.; Ngo, T. K. V.; Sporken, R. Direct transfer of the CVD-grown graphene on copper foils on SiO2 substrate under supercritical CO2 assisted-cleaning technique. Mater Today Commun. 2019, 18, 184–190.

    CAS  Article  Google Scholar 

  85. [85]

    McHugh, M.; Krukonis, V. Supercritical Fluid Extraction: Principles and Practice, 2nd ed.; Elsevier Inc.: Amsterdam, 2013.

    Google Scholar 

  86. [86]

    Zhang, J. C.; Jia, K. C.; Lin, L.; Zhao, W.; Quang, H. T.; Sun, L. Z.; Li, T. R.; Li, Z. Z.; Liu, X. T.; Zheng, L. M. et al. Large-area synthesis of superclean graphene via selective etching of amorphous carbon with carbon dioxide. Angew. Chem., Int. Ed. 2019, 58, 14446–14451.

    CAS  Article  Google Scholar 

  87. [87]

    Song, I.; Park, Y.; Cho, H.; Choi, H. C. Transfer-free, large-scale growth of high-quality graphene on insulating substrate by physical contact of copper foil. Angew. Chem., Int. Ed. 2018, 57, 15374–15378.

    CAS  Article  Google Scholar 

  88. [88]

    Dong, Y. B.; Xie, Y. Y.; Xu, C.; Fu, Y. F.; Fan, X.; Li, X. J.; Wang, L.; Xiong, F. Z.; Guo, W. L.; Pan, G. Z. Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst. Nanotechnology 2018, 29, 365301.

    Article  CAS  Google Scholar 

  89. [89]

    Guo, L. C.; Zhang, Z. Y.; Sun, H. Y.; Dai, D.; Cui, J. F.; Li, M. Z.; Xu, Y.; Xu, M. S.; Du, Y. F.; Jiang, N. et al. Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD. Carbon 2018, 129, 456–461.

    CAS  Article  Google Scholar 

  90. [90]

    Shin, B. G.; Boo, D. H.; Song, B.; Jeon, S.; Kim, M.; Park, S.; An, E. S.; Kim, J. S.; Song, Y. J.; Lee, Y. H. Single-crystalline monolayer graphene wafer on dielectric substrate of SiON without metal catalysts. ACS Nano 2019, 13, 6662–6669.

    CAS  Article  Google Scholar 

  91. [91]

    Pang, J. B.; Mendes, R. G.; Wrobel, P. S.; Wlodarski, M. D.; Ta, H. Q.; Zhao, L.; Giebeler, L.; Trzebicka, B.; Gemming, T.; Fu, L. et al. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 2017, 11, 1946–1956.

    CAS  Article  Google Scholar 

  92. [92]

    Khan, A.; Islam, S. M.; Ahmed, S.; Kumar, R. R.; Habib, M. R.; Huang, K.; Hu, M.; Yu, X. G.; Yang, D. R. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 2018, 5, 1800050.

    Article  CAS  Google Scholar 

  93. [93]

    Qing, F. Z.; Zhang, Y. F.; Niu, Y. T.; Stehle, R.; Chen, Y. F.; Li, X. S. Towards large-scale graphene transfer. Nanoscale 2020, 12, 10890–10911.

    CAS  Article  Google Scholar 

  94. [94]

    Lin, L.; Peng, H. L.; Liu, Z. F. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524.

    CAS  Article  Google Scholar 

  95. [95]

    Mendes, R. G.; Pang, J. B.; Bachmatiuk, A.; Ta, H. Q.; Zhao, L.; Gemming, T.; Fu, L.; Liu, Z. F.; Rümmeli, M. H. Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano 2019, 13, 978–995.

    CAS  Google Scholar 

  96. [96]

    Kotal, M.; Kim, J.; Kim, K. J.; Oh, I. K. Sulfur and nitrogen Co-doped graphene electrodes for high-performance ionic artificial muscles. Adv. Mater. 2016, 28, 1610–1615.

    CAS  Article  Google Scholar 

  97. [97]

    Leong, W. S.; Arrabito, G.; Prestopino, G. Artificial intelligence algorithm enabled industrial-scale graphene characterization. Crystals 2020, 10, 308.

    CAS  Article  Google Scholar 

  98. [98]

    Cha, S.; Cha, M.; Lee, S.; Kang, J. H.; Kim, C. Low-temperature, dry transfer-printing of a patterned graphene monolayer. Sci. Rep. 2015, 5, 17877.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52071225), the Czech Republic from ERDF “Institute of Environmental Technology — Excellent Research” (No. CZ.02.1.01/0.0/0.0/16_019/0000853). M. H. R. and L. F. thank the Sino-German Research Institute for support (project: GZ 1400). X. Q. Y. thanks Suzhou University. H. Q. T. thanks the Alexander Von Humboldt Foundation for support through a fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark H. Rummeli.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ullah, S., Yang, X., Ta, H.Q. et al. Graphene transfer methods: A review. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3345-8

Download citation

Keywords

  • high-quality transfer
  • application-compatible substrate
  • graphene technology