Ultrathin lead-free double perovskite cesium silver bismuth bromide nanosheets


Two-dimensional (2D) lead halide perovskites nanostructures have drawn great fundamental interest and displayed excellent properties for various optoelectronic applications. However, the toxicity of lead remains a concern for their large-scale utilizations. Bismuth halide double perovskites stand out as a class of promising candidates for lead-free halide perovskites. In this work, we demonstrate the first synthesis of lead-free 2D halide double perovskite nanosheets. The synthesized Cs2AgBiBr6 nanosheets exhibited thicknesses in the range of 3–5 nm and lateral dimensions of ∼ 200 nm. The nanosheets showed a strong absorption peak centered at ∼ 430 nm and the photoluminescence emission observed at ∼ 630 nm. We also explored dimensionality control from zero-dimensional nanocubes to 2D nanosheets and investigated the preferential growth of Cs2AgBiBr6 over other related compounds such as Cs3Bi2Br9 and CsAgBr2. Our study reveals that Cs2AgBiBr6 nanosheets are interesting 2D material for potential optoelectronic applications and provides a guideline for the controllable synthesis of multi-component compounds with tunable morphology, dimensionality and phase.

This is a preview of subscription content, access via your institution.


  1. [1]

    Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103.

    CAS  Article  Google Scholar 

  2. [2]

    Qiu, L. B.; He, S. S.; Ono, L. K.; Liu, S. Z.; Qi, Y. B. Scalable fabrication of metal halide perovskite solar cells and modules. ACS Energy Lett. 2019, 4, 2147–2167.

    CAS  Article  Google Scholar 

  3. [3]

    Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L.; Ma, J.; Wang, L. W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.

    CAS  Article  Google Scholar 

  4. [4]

    Wei, W.; Zhang, Y.; Xu, Q.; Wei, H. T.; Fang, Y. J.; Wang, Q.; Deng, Y. H.; Li, T.; Gruverman, A.; Cao, L. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 2017, 11, 315–321.

    CAS  Article  Google Scholar 

  5. [5]

    Quan, L. N.; Rand, B. P.; Friend, R. H.; Mhaisalkar, S. G.; Lee, T. W.; Sargent, E. H. Perovskites for next-generation optical sources. Chem. Rev. 2019, 119, 7444–7477.

    CAS  Article  Google Scholar 

  6. [6]

    Giustino, F.; Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 2016, 1, 1233–1240.

    CAS  Article  Google Scholar 

  7. [7]

    Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

    CAS  Article  Google Scholar 

  8. [8]

    Zhang, Q.; Yin, Y. D. All-inorganic metal halide perovskite nanocrystals: Opportunities and challenges. ACS Cent. Sci. 2018, 4, 668–679.

    CAS  Article  Google Scholar 

  9. [9]

    Liang, J. H.; Chen, D.; Yao, X.; Zhang, K. X.; Qu, F. L.; Qin, L. S.; Huang, Y. X.; Li, J. H. Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications. Small 2020, 16, 1903398.

    CAS  Article  Google Scholar 

  10. [10]

    Patrick, L. Lead toxicity, a review of the literature. Part I: Exposure, evaluation, and treatment. Altern. Med. Rev. 2006, 11, 2–22.

    Google Scholar 

  11. [11]

    Zhao, X. G.; Yang, J. H.; Fu, Y. H.; Yang, D. W.; Xu, Q. L.; Yu, L. P.; Wei, S. H.; Zhang, L. J. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 2017, 139, 2630–2638.

    CAS  Article  Google Scholar 

  12. [12]

    Fan, Q. Q.; Biesold-McGee, G. V.; Ma, J. Z.; Xu, Q. N.; Pan, S.; Peng, J.; Lin, Z. Q. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew. Chem., Int. Ed. 2020, 59, 1030–1046.

    CAS  Article  Google Scholar 

  13. [13]

    Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141.

    CAS  Article  Google Scholar 

  14. [14]

    McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 2016, 28, 1348–1354.

    CAS  Article  Google Scholar 

  15. [15]

    Pan, W. C.; Wu, H. D.; Luo, J. J.; Deng, Z. Z.; Ge, C.; Chen, C.; Jiang, X. W.; Yin, W. J.; Niu, G. D.; Zhu, L. J. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photon. 2017, 11, 726–732.

    CAS  Article  Google Scholar 

  16. [16]

    Huang, J. M.; Lai, M. L.; Lin, J.; Yang, P. D. Rich chemistry in inorganic halide perovskite nanostructures. Adv. Mater. 2018, 30, 1802856.

    Article  Google Scholar 

  17. [17]

    Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

    CAS  Article  Google Scholar 

  18. [18]

    Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

    CAS  Article  Google Scholar 

  19. [19]

    Wang, K. Y.; Xing, G. C.; Song, Q. H.; Xiao, S. M. Micro- and nanostructured lead halide perovskites: From materials to integrations and devices. Adv. Mater. 2020, 2000306.

  20. [20]

    Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.

    CAS  Article  Google Scholar 

  21. [21]

    Shamsi, J.; Dang, Z. Y.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 2016, 138, 7240–7243.

    CAS  Article  Google Scholar 

  22. [22]

    Weidman, M. C.; Seitz, M.; Stranks, S. D.; Tisdale, W. A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 2016, 10, 7830–7839.

    CAS  Article  Google Scholar 

  23. [23]

    Tyagi, P.; Arveson, S. M.; Tisdale, W. A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J. Phys. Chem. Lett. 2015, 6, 1911–1916.

    CAS  Article  Google Scholar 

  24. [24]

    Dou, L. T.; Wong, A. B.; Yu, Y.; Lai, M. L.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 2015, 349, 1518–1521.

    CAS  Article  Google Scholar 

  25. [25]

    Shi, E. Z.; Yuan, B.; Shiring, S. B.; Gao, Y.; Akriti; Guo, Y. F.; Su, C.; Lai, M. L.; Yang, P. D.; Kong, J. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 2020, 580, 614–620.

    CAS  Article  Google Scholar 

  26. [26]

    Bekenstein, Y.; Dahl, J. C.; Huang, J. M.; Osowiecki, W. T.; Swabeck, J. K.; Chan, E. M.; Yang, P. D.; Alivisatos, A. P. The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions. Nano Lett. 2018, 18, 3502–3508.

    CAS  Article  Google Scholar 

  27. [27]

    Yang, B.; Pan, W. C.; Wu, H. D.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Yin, L. X.; Du, X. Y.; Miao, X. S.; Yang, X. Q. et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 2019, 10, 1989.

    Article  Google Scholar 

  28. [28]

    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    CAS  Article  Google Scholar 

  29. [29]

    Bass, K. K.; Estergreen, L.; Savory, C. N.; Buckeridge, J.; Scanlon, D. O.; Djurovich, P. I.; Bradforth, S. E.; Thompson, M. E.; Melot, B. C. Vibronic structure in room temperature photoluminescence of the halide perovskite Cs3Bi2Br9. Inorg. Chem. 2017, 56, 42–45.

    CAS  Article  Google Scholar 

  30. [30]

    Connor, B. A.; Leppert, L.; Smith, M. D.; Neaton, J. B.; Karunadasa, H. I. Layered halide double perovskites: Dimensional reduction of Cs2AgBiBr6. J. Am. Chem. Soc. 2018, 140, 5235–5240.

    CAS  Article  Google Scholar 

  31. [31]

    Li, S. R.; Luo, J. J.; Liu, J.; Tang, J. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, Status, and potential applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007.

    CAS  Article  Google Scholar 

  32. [32]

    Steele, J. A.; Puech, P.; Keshavarz, M.; Yang, R. X.; Banerjee, S.; Debroye, E.; Kim, C. W.; Yuan, H. F.; Heo, N. H.; Vanacken, J. et al. Giant electron-phonon coupling and deep conduction band resonance in metal halide double perovskite. ACS Nano 2018, 12, 8081–8090.

    CAS  Article  Google Scholar 

  33. [33]

    Lv, C. F.; Yang, X. G.; Shi, Z. F.; Wang, L. R.; Sui, L. Z.; Li, Q. Y.; Qin, J. X.; Liu, K. K.; Zhang, Z. F.; Li, X. et al. Pressure-induced ultra-broad-band emission of a Cs2AgBiBr6 perovskite thin film. J. Phys. Chem. C 2020, 124, 1732–1738.

    CAS  Article  Google Scholar 

  34. [34]

    Yang, B.; Hong, F.; Chen, J. S.; Tang, Y. X.; Yang, L.; Sang, Y. B.; Xia, X. S.; Guo, J. W.; He, H. X.; Yang, S. Q. et al. Colloidal synthesis and charge-carrier dynamics of Cs2AgSb1−yBiyX6 (X: Br, Cl; 0 ≤ y ≤ 1) double perovskite nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 2278–2283.

    CAS  Article  Google Scholar 

  35. [35]

    Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.

    CAS  Article  Google Scholar 

  36. [36]

    Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knüsel, P. N.; Kress, S. J. P.; Prins, F.; Erwin, S. C.; Norris, D. J. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017, 16, 743–748.

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Nos. 51901171 and 61875119), the Fundamental Research Funds for the Central Universities (No. 501LKQB2020104011), the program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Shanghai Rising-Star Program (No. 19QA1404000), and Shanghai Talent Development Fund.

Author information



Corresponding authors

Correspondence to Jianmei Huang or Mingjing Qi.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zou, S., Lin, J. et al. Ultrathin lead-free double perovskite cesium silver bismuth bromide nanosheets. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3343-x

Download citation


  • inorganic halide perovskites
  • double perovskites
  • nanocrystals
  • bismuth based
  • two-dimensional nanostructures